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Abstract

In graphical modelling, the arrangement of diagram elements can be a tiresome
and mechanic work. To free users from this, layout algorithms arrange the diagram
elements automatically.

Different modelling domains require different layouts. A layout approach
suitable for data flow diagrams is the layered layout approach. This approach
is structured in several phases, of which one is called node placement. Present
implementations are known to produce many edge bends. One task of this thesis is
to employ a node placement algorithm which yields significantly less edge bends.

Another well known problem in layout algorithms is label placement. Present
approaches rely on a post-processing by placing labels after the diagram has been
laid out. The approaches presented in this thesis integrate label placement into the
layout, resulting in more freedom and clean placements of labels.

Evaluation shows that both tasks can be fulfilled, but have to accept a trade-off
which is a generally larger drawing of the respective diagrams.
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Chapter 1

Introduction

A difficult problem with computer systems is to make them accessible and usable
to a large group of users. Especially the different knowledge background and the
experience of users in working with computer programs often poses a great hurdle
to developing usable designs. Here, a compromise is found by abstracting the
task in a way which allows many users to work in an environment that is already
known to them. To achieve that, graphical modelling and design may be a feasible
solution. A graphical web site editor is considered more usable than an editor
which relies on textual source code.

The same holds for engineering and the design of large and complex systems.
Here, popular abstraction is to combine the used hardware or software components
graphically, rather than using a textual programming or hardware description
language.

But building on a common abstraction is far from being the only benefit of
graphical modelling. Beside its usage in design and development, graphical models
can also be used for documenting and describing existing systems. An example
for that are some model types of the Unified Modelling Language (UML). Class
diagrams, for example, can describe large object oriented software in a way that
allows a quicker overview compared to studying the source code line by line.

When comparing textual and graphical design, a core problem of graphical
design appears: while layout and arrangement in a textual environment is typically
straightforward due to the few levels of freedom, layout and arrangement in a
graphical environment can be a complex and time-consuming problem. When
designing a diagram such as the one shown in Figure 1.1, a lot of time is used to
arrange the diagram elements, a task that usually results in no semantic benefit
and may drive users away from graphical design due to its monotony.

Automatic layout algorithms were developed to alleviate users from the need
of having to layout their diagrams manually. With that, diagrams can be arranged
automatically, to free the user of this time-consuming and annoying task. As one
can easily imagine, the automatic layout of diagrams is a demanding problem which
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1. Introduction

Figure 1.1. An UML diagram showing the structure and relations of the GoodRelations
ontology.1

offers an almost infinite pool of possible approaches. Each of these approaches
usually focusses on a certain diagram type or class of diagram types, because the
requirements to an automatic layout differ from domain to domain.

The diagram type relevant to this thesis are data flow diagrams. With data flow
diagrams, the system is represented by components, usually called actors, that
process data and links that define how data is distributed between the actors. This
distribution is also called the data flow. Data flow diagrams themselves were subject
to a lot of research work in computer science over the last decades, and may have
a different behaviour or semantics, depending on the definitions [Kah74, LM87].
An example for a data flow diagram is given in Figure 1.2, where the Fourier
transformation of a waveform is computed and plotted.

As the name of this diagram type suggest, an important part of the drawings is
the flow of the data. Hence, one goal of an automatic layout approach would be
to arrange the drawing in a way that emphasizes the flow of data, resulting in a
diagram that is easy to follow. An approach which deals with exactly this problem
is the hierarchical or layered layout approach.

To be able to cope with a complex task such as automatic layout, algorithms are

1http://purl.org/goodrelations/
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1.1. Related Work

Figure 1.2. A data flow diagram from the Ptolemy II modelling tool [EJL+03], showing the
computation of a Fourier series.

usually split into several subtasks or phases. One such phase of the layered layout
approach is called node placement, which computes the vertical coordinates of actors
given a horizontal arrangement computed by a previous phase. This subtask will
be dealt with in this thesis.

Another subtask can be the placement of diagram annotations or labels. Usually,
label placement is applied as post-processing, taking a laid out diagram and fitting
the labels into the drawing. In this thesis, approaches are explored that integrate
label placement into the actual layout algorithm, resulting in an easier placement
due to the ability to explicitly reserve space for the labels.

To give a better idea of the scientific environment and other work on the
topics of this thesis, the following section will present related work, investigate the
groundwork for the approaches of this thesis, and distinguish other approaches
that might look similar at a first glance.

1.1 Related Work

An approach for drawing directed, acyclic graphs, known as the hierarchical or
layered approach, was proposed by Sugiyama, Tagawa, and Toda [STT81]. They
split the problem of graph drawing into several sub problems to make it more
manageable. The general idea of sorting vertices into layers that are placed below
or above each other is realized in three steps. In the first step, the set of vertices
is partitioned into layers. After that, the order of the vertices inside every layer

3



1. Introduction

is changed such that the connections between the vertices of any two consecutive
layers produce as few crossings as possible. In a final phase, the horizontal position
of every vertex is determined, as the vertical position is indicated by the layering.
As this thesis deals with vertex positioning (also referred to as node placement),
the work of Sugiyama et al. is groundwork for it and implemented in an algorithm
based on the Sugiyama approach that will be presented later in this section.

Several approaches to the node placement sub task were investigated. An
approach by Sander uses the concept of linear segments, grouping vertices that
are placed on a straight line [San96]. Linear segments are used mainly to make
sure that edges spanning multiple layers are drawn straightly, while connections
between actors are neglected.

A similar but more complex approach which creates larger vertex groups is
proposed by Buchheim et al. [BJL01]. In the beginning, a virtual placement is
created by placing vertices leftmost or rightmost. The average of this placement
is used for thoroughly traversing the graph layer-wise until optimal sequences of
vertices are found. With this, every edge has at most two bends if a straightforward
edge drawing is used. Compared to the following approach, this approach consists
of complex algorithms with larger run times.

A third approach is proposed by Ulrik Brandes and Boris Köpf [BK02]. Again,
vertices are grouped into larger units called blocks whose vertices are placed on a
straight line. This approach can be seen as being in the middle of the two other
approaches. The blocks can also consist of vertices and edges, but are created
in a best effort manner by traversing the graph in four directions, contrary to
the complex sequencing of Buchheim. The approach of this thesis bases on the
approach by Brandes and Köpf by extending it, especially by adding support for
vertex sizes and connection points.

For the evaluation of results, a method for quantifying the quality of a layout
is necessary. Basic aesthetics criteria were presented by Sugiyama et al. alongside
with their layout approach.

A work that focusses on aesthetics of drawn graphs is presented by Helen
Purchase [Pur02]. She presents aesthetics criteria that can be applied to decide on
the quality of a graph drawing.

In terms of label placement, the root of the placement problems is found
outside of the domain of computer science. The first approaches on this field
were connected to cartography, dealing with the placement of city names or other
landmarks on drawn maps.

First approaches to an automatic placement of labels in cartography were

4
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investigated by Pinhas Yoeli and Eduard Imhof [Yoe72, Imh75]. They laid the
foundation for most placement algorithms by introducing the approach of defining
a set of candidate positions for each label, preferably close to the labeled element,
and a set of quality rules to guide the selection of the best of the offered candidate
positions.

While computer science has developed algorithms for a good cartographic
labeling, the introduction of graphical modelling and layout algorithms created
a new set of problems in the domain of graph labeling. Konstantinos Kakoulis
and Ioannis Tollis did a lot of research in this area and developed algorithms for
different labeling problems in graph drawing, most notably node label placement
and edge label placement as a post-processing on an already drawn graph [KT03].
They apply the candidate position approach to the different placement problems.
Label placement in this thesis is addressed in a similar way. However, instead
of performing a post-processing on an already laid out graph, the placement is
incorporated into the layout, thus adding the ability to explicitly reserve space for
the labels.

An interesting approach to label placement is presented by Pak Wong et al.
[WMP+05]. Instead of placing edge labels close to an edge, they use the label itself
to represent the edge. Although this is certainly a creative idea, the practical usage
is questionable since readability, especially with respect to edge crossings, is then
an issue.

In the dot layout algorithm by Gansner et al., label placement is also incorporated
into the layout algorithm and space for edge labels is reserved by modifying the
edge routing [GKN02]. The label is then placed next to the center of an edge and
can also be connected to the corresponding edge by a dashed line. This is a rather
simple and inflexible method, thus a different approach is chosen in this thesis.

Castelló et al. have published research on label placement in a layered layout
approach for state charts [CMT01]. For a feasible placement of edge labels, they
introduce sub layers which are placed between the regular layers. The space created
by these sub layers is used for the placement of edge labels. While this is a good
approach for state charts where edge labels usually follow a uniform structure,
some problems occur in data flow diagrams. Not every connection has a label,
and the labels may be structured differently, resulting in having to reserve enough
space for the largest label. The following approach, that also uses virtual structures
introduced by the layout algorithm, such as dummy vertices and layers, might be a
better compromise.

Although Eiglsperger et al. worked on label placement in an orthogonal layout

5
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instead of a layered layout, one of their ideas can be used in the context of layered
layout as well. In orthogonal layouts, dummy vertices that are not part of the
original drawing are used to create ninety degree angles. Eiglsperger et al. use
these dummy vertices to save space for labels [EKS03]. A similar approach is used
in the context of layered layouts in this thesis.

In the environment of Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER), a framework whose goal it is to improve the pragmatics of graphi-
cal modelling [FvH10], several researchers investigated and implemented layout
algorithms for data flow diagrams. Most notable for the topics dealt with in this
thesis is the work of Miro Spönemann and Christoph Daniel Schulze. Spönemann
compared hierarchical and orthogonal layout approaches for their use in data
flow diagrams, resulting in a modified implementation of Sugiyama’s approach
with feasible results [Spö09]. Schulze improved this implementation, especially
with respect to edge connection points [Sch11]. Additionally, he restructured the
algorithm to be more adaptive, allowing to introduce sub tasks between and after
the main phases of the algorithm.

1.2 Research Goals

As mentioned in the previous section, the contributions of this thesis will be
implemented into the KIELER Layout Algorithms (KLay) Layered layout algorithm.
As this thesis consists of two separate problems in the same layout algorithm, the
research goals for this thesis are presented in two sections.

1.2.1 Improving Node Placement

The node placement problem is a sub task of the layered layout approach. It
decides on vertical positions of diagram elements, after a horizontal ordering was
determined by an earlier phase. While it is not that important for the understanding
of node placement, keep in mind that the final horizontal position is computed by
the last sub task of the algorithm.

The current implementation in the context of KLay Layered has algorithms for
each of the sub tasks of the layered layout approach. However, these algorithms are
heuristics and may not always produce an optimal result with respect to certain
criteria. As Christoph Daniel Schulze also pointed out in his diploma thesis, the
results of the current node placement algorithms are not satisfying in some cases,

6
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Figure 1.3. An example result of KLay Layered, with edge bends marked of which at least
some may be avoided.

especially because unnecessary edge bends are introduced [Sch11]. An example
for that can be seen in Figure 1.3.

The first goal of this thesis is the improvement of node placement. A different
approach to node placement has to be found, focussing on the straight drawing of
edges. As the main domain of applications are data flow diagrams, connections
in diagrams will be drawn orthogonally, meaning that all angles in the drawings
are ninety degrees. This results in many edge bends if connection points of edges
are not assigned the same vertical coordinate. Thus, vertical coordinates have to be
found in which as many connection points as possible are on the same level.

While a better node placement behaviour with respect to edge bends is the
main goal of this thesis, other, connected new features may be introduced as sub
goals. A sub goal could for example be the development of a priority mechanism
which tries to give certain edges priority over others when it comes to deciding
which edges to draw straightly.

1.2.2 Implementing Label Placement

The goals in terms of label placement are more open. This is, because there is
no real label placement included in the current implementation of KLay Layered,
resulting in a wide field of possible goals and approaches.

Label placement can refer to all kinds of annotations or text fields in a graph.
Normally, these annotations are connected to certain elements of a diagram, for
example, connectors. So the general task of label placement is to draw these
annotations close to their connected elements. Furthermore, the labels should
be drawn well away from other elements, to prevent any kind of overlapping or
ambiguity as to which elements a label belongs to.

To keep the goals comprehensible, this wide field has to be reduced to a certain

7
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subset. A lot of work has already been done in terms of placing labels as a post-
processing step. Thus, the goal of this thesis is an investigation of placement
approaches that can be integrated into a layout algorithm such that the placement
is easier and better, because the whole layout can be changed to reserve enough
space for a good label placement.

1.3 Overview

This thesis starts with an introduction of theoretical and mathematical concepts and
a brief description of the working environment, the encapsulating tools, and existing
algorithms in Chapter 2. After that, the topic of node placement is investigated
in Chapter 3, starting with a detailed problem statement. A presentation of the
chosen approach, its implementation, and a comparison of the results with the
results of the old node placement algorithm based on linear segments is also
included in this chapter. Chapter 4 moves on to the label placement problem.
Again, a detailed problem statement is given, introducing and discussing a new
sub problem. Approaches to an integrated label placement are presented, followed
by a description of how some of these approaches were integrated into KLay

Layered. A short evaluation of the implementation’s results completes the label
placement chapter. Chapter 5 concludes this thesis by summarizing it, discussing
the achievements with respect to the posed goals, and by giving an outlook on
tasks that remain for future work.
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Chapter 2

Preliminaries

In this chapter, the foundations for understanding this thesis will be presented.
The chapter starts with a section about terminology and definitions, clarifying any
basic models, terms, or structures which will be used later on. Following that, a
brief introduction of the working environment in which the contributions of this
thesis will be used is given. Finally, the layered layout approach will be introduced
and the specialities and features of the relevant implementation, namely KIELER

Layout Algorithms (KLay) Layered, will be explained.

2.1 Terminology and Definitions

The basic model of thought when coping with automatic layout is a graph, which
can be defined as follows:

Definition 2.1. A graph G is a pair (V, E), with a finite set of vertices or nodes V,
and a set of edges E Ď {(u, v)|u, v P V}.

A layout algorithm may also extend the set of vertices if necessary by inserting
dummy vertices into V and removing them before the algorithm has finished. Then,
V consists of two partitions, the regular vertices Vr and the dummy vertices Vd.

This rather simple graph definition can be extended or refined to cover different
kinds of drawings or model. The first refinement which may impact a layout
algorithm is the definition of a directed graph:

Definition 2.2. A graph G = (V, E) is called a directed graph if all elements of E
are ordered pairs which imply the direction of an edge.

An extension to the already defined graphs is a port-based graph, which adds
connection points for edges to vertices. This connection points may be freely
arrangeable on a vertex, may have a fixed side, a fixed order, a fixed ratio, or even
a fixed position on the vertex. Its formal definition is given below:

9



2. Preliminaries

Definition 2.3. A (directed), port-based graph G is a 4-tuple (V, E, P, v) with a finite
set of vertices V, a set of edges E Ď {(p, q)|p, q P P}, a finite set of ports P, and a
function v : P Ñ V for mapping elements of P to elements of V.

Any layout algorithm which applies to port-based graphs can be used for non-
port-based graphs by simply resolving the mapping function v. Thus, the following
definitions and algorithms will just be given for port-based graphs.

When working with the layered layout approach, a layering has to be applied
to the graph at one point of the layout algorithm. The following definition deals
with a layered, port-based graph:

Definition 2.4. A (directed), layered, port-based graph G is a 5-tuple (V, E, P, L, v),
with V, E, P and v defined as in Definition 2.3, and L a finite ordered set (L0, ..., Lk),
which is a partition of V into non-empty layers. Each element of V has to be part of
exactly one layer.

For the better description of and navigation through graph elements, several
relations and auxiliary functions are given in the following definition:

Definition 2.5. Given a (directed), layered, port-based graph G = (V, E, P, L, v),
with t, u, w P V, p, q, r P P, e = (p, q) P E and i, j P N, the following holds:

Ź L(u) = i, if u P Li

Ź Li(j) = u, if u is the j-th vertex of Li

Ź pos(u) = j, if u is the j-th vertex of Li

Ź The number of vertices in a layer Li is denoted as |Li|

Ź e is called short, if |L(v(q))´ L(v(p))| = 1, otherwise it is called long

Ź e is called inner segment, if v(p), v(q) P Vd, otherwise it is called outer segment

Ź e is called in-layer, if |L(v(q))´ L(v(p))| = 0

Ź The forerunner of Li(j) in a layer is f ore(Li(j)) = Li(j´ 1) if j ą 0

Ź Likewise, the follower of Li(j) is f oll(Li(j)) = Li(j + 1) if j ă |Li| ´ 1

Ź pred(u) = {v(p) : (p, q) P E, v(q) = u} denote the predecessors of u in a directed
graph

10



2.1. Terminology and Definitions

Ź Likewise, succ(u) = {v(r) : (q, r) P E, v(q) = u} denote the successors of u in a
directed graph

The definition of a layered graph can be extended by introducing the concept
of a proper layering:

Definition 2.6. The layering of a (directed) port-based graph is called proper, if the
following holds: L(v(p)) = L(v(q)) + 1, if e = (p, q) P E.

A proper layering can be employed in any layered graph by inserting dummy
vertices into edges which span more than one layer. The dummy vertices are
inserted in the spanned layers and connected, such that the constraint of Defini-
tion 2.6 is met. With dummy vertices present, non-dummy vertices are also referred
to as regular vertices.

Furthermore, an ordering can be defined on the vertices inside every layer of a
layered graph:

Definition 2.7. Given a (directed), layered, port-based graph G = (V, E, P, L, v)
with u, w P V, an ordering is a partial order ≺ on V, such that u ≺ w or w ≺ u if
and only if L(u) = L(w).

With this, a vertex can be denoted as u(i)
j , given a layer Li = {u(i)

0 , ..., u(i)
|Li|´1}

and an ordering u(i)
0 ≺ u(i)

1 ≺ ... ≺ u(i)
|Li´1|.

The last extension to be made to the graph model is the addition of labels to
the elements of a graph. Labels contain text, giving further information about the
labeled elements.

Definition 2.8. A (directed), layered, port-based, labeled graph G is a 9-tuple
(V, E, P, L, Θ, v, θV , θE, θP), with V, E, P, L and v defined as in Definition 2.4. Θ
is a finite set of labels, with |Θ| ď |V|+ |P|+ 3 ¨ |E|. θV : V Ñ Θ, θP : P Ñ Θ and
θE : E Ñ (ΘˆΘˆΘ) are mapping functions which assign the labels to elements of
the graph. The 3-tuple θE maps to consist of a head, center, and tail label respectively.

This concludes the general definitions and terminology section. Now, the focus
will lie on the working environment, in which a future implementation will take
place.
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2. Preliminaries

2.2 Kiel Integrated Environment for Layout
Eclipse Rich Client

Since the contributions of this thesis will be integrated and used in the research
project Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1, a
brief introduction of KIELER and its relevant parts follows.

The KIELER project deals with the improvement of graphical model-based design
of large and complex systems. Its capabilities range from editing features such
as structure based editing, which allows to change the model’s structure directly
instead of through diagram editing operations, to focus and context, a view principle
which expands the currently important parts of a model (focus) and hides the rest
of the model (context). A key enabler for these techniques is the also provided
automatic layout, since the structure of the model will often change, requiring in
its diagrammatic representation to be adapted and laid out to reflect the changes.
Thus, automatic layout is a prerequisite for the practical use of the techniques
described above. A much more detailed description of the KIELER project is given
by Hauke Fuhrmann as a part of his dissertation [Fuh11].

As the “ER” part of the KIELER acronym shows, KIELER is implemented as
an Eclipse Rich Client: The different parts of KIELER are implemented as plug-ins
for the Eclipse2 platform and thus are written in Java. Eclipse is a widespread
platform originally developed by IBM in 2001. The concepts of KIELER described
above fit well with the Eclipse environment, since there a several graphical editors
which can be used in Eclipse. Furthermore, the popular Graphical Modelling
Framework (GMF) allows the creation of custom graphical editors which can also
benefit from the KIELER concepts.

Automatic layout in particular is a technique which graphical editors can
immediately benefit from. One of the automatic layout algorithms shipped with
KIELER is the KLay Layered algorithm. The contributions of this thesis will be
applied to this algorithm, although the presented concepts may also be used within
other layout algorithms. These layout algorithms can be used with any graphical
editor, by creating a bridge which moulds the content of the editor in a data
structure understood by the algorithms. The part of KIELER which provides this
bridge for automatic layout is called KIELER Infrastructure for Meta Layout (KIML).
A short overview of KIML will be given in the next section.

1http://www.informatik.uni-kiel.de/rtsys/kieler
2http://www.eclipse.org
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KIELER Infrastructure for
Meta Layout

KGraph

Diagram Editor View
Layout Algorithm

X=10
Y=5

X=5
Y=12

X=18
Y=10

Algorithm
Glue Code

extract graph

apply layout

Diagram
Glue Code

attach layout result

transform graph

Figure 2.1. KIML structure overview [Fuh11].

2.2.1 KIELER Infrastructure for Meta Layout

As mentioned before, the topic of automatic diagram layout not only consists of
layout algorithms themselves, but also of the problem of getting the diagram in
a format readable by the layout algorithm and of applying the calculated layout
back to the diagram. Also, it is desirable to solve these problems as generically
as possible, such that as many algorithms as possible can be used for as many
diagram editors as possible without or without much adjustment to any of the
components.

The answer to that question in the KIELER project is KIML. It provides meta layout,
as it is no layout algorithm, but offers a framework for connecting layout algorithms
and diagram editors. KIML allows layout algorithms to provide layout options for
the user to be able to influence the results, e. g., how much space should be left
between vertices. An overview of the structure of KIML is shown in Figure 2.1.

A layout algorithm can be chosen individually for any supported editor. This
in itself already proves very useful, since different kinds of diagrams require
different layout approaches for good readability, and may even have a layout style
“typical” for them, e. g., the orthogonal layout often seen in Unified Modelling
Language (UML) class diagrams. To offer a set of already existing layout algorithms,
bridges to libraries like Open Graph Drawing Framework (OGDF) [CGJ+07] and
Graphviz [EGK+02] are included.

Apart from such existing layout libraries, KIELER also includes several own
layout algorithm implementations which are grouped in the KLay project. Currently,
there exist three layout algorithms in KLay, a force-based algorithm, a planarization-
based algorithm [Cla10, Kut10], and a layer-based algorithm [Spö09, Sch11]. The
latter will be the algorithm in which the contribution of this thesis will be integrated.
Therefore, the next section will give an overview of the layered layout approach.
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2.3 The Layered Layout Approach

The layered layout approach was proposed by Sugiyama, Tagawa and Toda [STT81]
and is therefore often referred to as the Sugiyama layout. The original algorithm
was limited to acyclic directed graphs and emphasized hierarchy and flow in the
resulting layout. For this reason the approach is also called hierarchical layout, but
is referred to as the layered approach in the KLay environment. This also helps
to avoid confusion with another meaning of the term hierarchy, referring to the
inclusion of separate sub-graphs into the graph with compound nodes.

The original approach of Sugiyama et al. proposed to divide the complex task
of graph layout in the following four phases:

(i) Find Hierarchy: The vertices of a graph are assigned to layers (a hierarchy in
the terminology of Sugiyama et al.) by following the direction of the graph.
To get a proper layering, edges spanning more than one layer have to be
broken by dummy vertices in each layer crossed by the edge.

(ii) Crossing Reduction: The number of edge crossings is reduced by switching
the order of vertices inside a layer.

(iii) Node Placement: The exact position of each vertex inside its corresponding
layer is determined, preserving the order calculated by the previous phase.

(iv) Drawing: Based on the layers and positions calculated in the previous step,
the graph is drawn. Dummy vertices have to be removed and replaced by
long edges.

For a better evaluation and discussion of layout results, Sugiyama et al. added
criteria (called elements in the original paper) of readability to their description of
a hierarchical layout [STT81]:

Ź Criterion A: The hierarchy of the layout, addressing the traceability of paths.

Ź Criterion B: The number of line or edge crossings in a graph, where less
crossings are desirable.

Ź Criterion C: The straightness of lines with respect to an edge routing parallel to
the layout direction, also improving the traceability. This criterion can be split
into criterion C1, the straightness of edges spanning only one layer, and criterion
C2, the straightness of edges spanning more than one layer

14



2.3. The Layered Layout Approach

(a) A graph with an odd balance. (b) The same graph with a balanced place-
ment.

Figure 2.2. Balancing in the context of Sugiyama’s aesthetics criteria.

Ź Criterion D: The closeness of connected vertices. Especially paths should
become short.

Ź Criterion E: The balance of edges coming from or going into a vertex. This
depends on the placement of the connected vertices, e. g., when having two
connected vertices on the same side, whether one is placed above the original
vertex and one below, which would result in a rather balanced placement, or
whether both are placed above or below the original vertex, which would result
in an odd placement, as can be seen in Figure 2.2. An equal balancing may
improve the readability of branching and joining, but also most likely reduces
the straightness of criterion C.

Since each phase posed by the approach can be solved by a separate algorithm,
many different approaches for each of the phases were developed in addition to
the original proposals [DETT99, ES90, GKNV93]. Going into the details of these
techniques would exceed the scope of this thesis, at the very least because this
thesis does not cover improvements for all the phases of layered layout.

Nevertheless, to give a better idea which will be the concrete environment
within which the improvements presented in this thesis will be implemented, the
following section will present the structure and workflow of the KLay Layered
layout algorithm in some more detail.
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Figure 2.3. An overview of the KLay Layered architecture, showing the five main phases
and the slots for intermediate processors [Sch11].

2.4 KLay Layered

As mentioned before, the KLay Layered algorithm bases on the work of Sugiyama
et al. and follows a similar approach. Yet, this basic approach was restructured
and improved [Spö09, Sch11], resulting in a larger variety of graphs that can be
laid out. KLay Layered has a very modular structure, allowing not only to replace
the concrete algorithm used in each phase, but also to insert further algorithms
between the phases if necessary. To make sure the modules work together, every
phase and module has to satisfy preconditions and postconditions for the following
phases and modules to rely on.

The basic structure of KLay Layered can be seen in Figure 2.3. The five main
phases will be described in the following section. After that, a description of
intermediate processors and a few examples will be given.

2.4.1 The Five Phases of KLay Layered

Contrary to the original four-phase approach of Sugiyama et al. to layered layout,
KLay Layered is structured into five phases. The last three phases largely correspond
to the original suggestion, with the difference of the last phase being edge routing
instead of graph drawing, but since the problem described in the first phase of the
original approach consists of two separate problems if the graph contains cycles,
it was decided to split this phase into two for a better representation of these
problems. Thus, the following five phases are the main elements of KLay Layered:

(i) Cycle Removal: Since the layered layout approach requires the graph to be
acyclic, cycles have to be removed. This can be achieved by flipping edges,
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2.4. KLay Layered

(a) A graph with a cycle. (b) The same graph without cycles by flip-
ping the dashed edge.

Figure 2.4. A simple example of cycle breaking.

but not by simply removing them, as seen in Figure 2.4. This is, because
the edge has to be present in later phases to be included in the final layout,
especially in the edge routing phase. Finding a minimal set of edges to be
flipped is an NP-complete problem [GJ79]; thus, a heuristic is used. The
current implementation is based on Greedy Cycle Breaking which was inspired
by Di Battista et al. [DETT99].

(ii) Layer Assignment: The goal of this step is to create a layered graph as
defined in Section 2.1 from a directed, acyclic graph. To create a proper
layering, an intermediate processor inserts dummy vertices as necessary to
break long edges into short ones. An example layering is given in Figure 2.5.

An optimization goal for layering is to minimize width and height of the
resulting graph, a problem which is, again, NP-complete [ES90]. Heuristics
in the current implementation are the Longest Path Layering [Spö09] and the
Network Simplex Layering [Döh10].

(iii) Crossing Minimization: In this phase, the algorithm tries to reduce the
number of edge crossings by changing the vertex order inside the layers.
Figure 2.6a depicts a graph with a crossing that can be avoided by switching
the order of the nodes A and B, resulting in the graph shown in Figure 2.6b.
But yet again, even if only two layers are considered, the problem of finding
an order with minimal edge crossings is NP-complete [GJ83]. A heuristic was
found with the Layer Sweep Crossing Minimizer. The approach here is to take
two layers, to assume the order of the vertices in one layer to be fixed, and to
use a heuristic to order the vertices in the non-fixed layer in a way that yields
few edge crossings. The current implementation uses a barycenter heuristic
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L0 L1 L2 L3

Figure 2.5. A properly layered graph with inserted dummy vertices.

L0 L1 L2

A

B

(a) A graph with crossings.

L0 L1 L2

B

A

(b) The same graph with minimized cross-
ings by flipping vertex order in layer L1.

Figure 2.6. An example of crossing minimization.

[Spö09] and also supports constraints on the order inside a layer, e. g., when
a certain vertex must be placed directly after another vertex for any reason.

(iv) Node Placement: In this step, the order of the vertices inside their layers and
the relations to other vertices is used to find a final y-coordinate for each
vertex. Optimization goals here are a compact drawing of the graph or trying
to minimize the number of non-straight edges. An example for the effects of
node placement is shown in Figure 2.7.

The current approach, the Linear Segments Node Placer, tries to achieve this by
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2.4. KLay Layered

(a) Naive node placement which places vertices on the topmost possible
position.

(b) Node placement of the same graph which tries to keep
straight paths.

Figure 2.7. The effects of different node placement methods.

grouping nodes into linear segments which can be drawn straightly. Since
the node placement problem is part of the contribution of this thesis, a more
detailed problem statement will follow later.

(v) Edge Routing: The final step of the layout, if no post-processing is applied, is
the edge routing. In this step, vertices are assigned their final positions, which
were already roughly determined by layer assignment and node placement.
After that, edges can be routed in different fashions. Examples of different
kinds of edge routing are given in Figure 2.8.

The simplest way of routing edges is implemented in the Polyline Edge Router,
which simply draws straight lines from vertex to vertex. A more complex
routing is arrived by using splines in the Spline Edge Router, which uses the
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(a) A graph with polyline edge routing. (b) The same graph with spline edge routing.

(c) The same graph with orthog-
onal edge routing.

Figure 2.8. Examples of different edge routing methods.

space left between nodes and other edges to draw smooth and curvy edges
[CRR10]. Another approach suitable especially for dataflow diagrams is the
Orthogonal Edge Router. The current implementation is based on an approach
proposed by Sander [San04].

These five phases represent the basic problems which are solved by KLay Layered.
To have the ability of flexibly tailoring the algorithm to special needs, e. g., for new
graph types or additional elements, and for having the main phases as pure as
possible, the processing slots for intermediate processors were introduced. The
following section will give a brief explanation of intermediate processors and
examples of important processors.

2.4.2 Intermediate Processors

As could be seen in the decision to extend the original four phases of the Sugiyama
layout into five phases, a major goal of KLay Layered was to keep the algorithms
in the respective modules as pure as possible. Factoring out tasks which are not
directly part of the phases into algorithms executed before or after the respective
phase is the natural consequence of this idea. These algorithms, executed in the
slots between the phases, are called intermediate processors.

A prominent example of an intermediate processor is introduced by the task
of proper layering. As defined in Section 2.1, a layering is proper if edges only

20



2.4. KLay Layered

connect vertices between neighbouring layers. Dummy vertices have to be inserted
to break edges spanning more than one layer. If this would be done directly in the
layer assignment phase, every layer assignment algorithm would have to include
the same code for long edge splitting. Furthermore, a later phase, e. g., every edge
router, would have to reconnect the splitted edges. With intermediate processors,
one processor for splitting the long edges is placed in the slot after phase two and
another processor rejoins the edges after phase five.

In general, every phase can specify which intermediate processors they require
in which slot in order to work correctly. The order of intermediate processors inside
a slot can be determined by dependencies between the processors, if any exist.
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Chapter 3

Node Placement

The first main chapter of this thesis will cope with the node placement problem in
the layered layout approach. The chapter will start with a problem statement, intro-
ducing the node placement problem in detail and giving the necessary definitions
of the problem and possible optimization goals. After that, a possible approach
to the problem will be presented and explained, and the implementation of that
approach in the context of KIELER and KLay Layered will be described. The last
section of the chapter will provide an evaluation of the implemented approach,
comparing the new results with other approaches and checking the fulfilment of
the posed goals and aesthetics criteria.

3.1 Problem Statement

As seen in Section 2.3, the node placement problem was already part of the approach
of Sugiyama et al., where it was originally called Determination of Horizontal Positions
(remember that Sugiyama et al. assumed graphs to be laid out from top to bottom,
not from left to right as in this thesis). It was executed as the third step of a
four step layout algorithm. In KLay Layered, as described in subsection 2.4.1, it is
the fourth step of a five step algorithm and is called the Node Placement Problem.
Although the goal is basically the same, the name has been changed to better reflect
the generic nature of suitable algorithms.

To get a basic understanding of the problem, a closer look at the role of node
placement within the whole layered layout algorithm might help. Figure 3.1
shows an overview of the five phases of KLay Layered, with the node placement
phase highlighted. With the information about the first three phases given in
subsection 2.4.1, the input to the fourth phase is an acyclic graph which is divided
into layers and has a fixed order for the vertices within each layer. Intermediate
processors might also have changed the graph, e. g., by splitting long edges to
achieve a proper layering. The fifth phase expects a graph in which it can route all
edges without having to cross other nodes or introduce more edge crossings than
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Figure 3.1. The position of the node placement phase in KLay Layered.

δ

δ x - δ

Figure 3.2. Three vertices, with δ denoting the smallest allowed distance between them.

required with the vertex ordering the crossing minimization phase has yielded.
As mentioned before, the choice of layout directions only requires a geometrical

transformation. Thus, node placement will take place vertically in the following
without loss of generality. Speaking in coordinates, this means that the approximate
x coordinate is indicated by the layer a vertex belongs to, while it is the task of
the node placer to find suitable y coordinates. Additionally, KLay Layered also
requires a layout algorithm to respect a minimum separation constraint, also called
object spacing, a minimum distance between any two vertices, which will be denoted
as δ. An example of the effects of a minimum separation constraint is shown in
Figure 3.2. Note that δ can be different for different vertex pairs under certain
conditions.

With this and the definitions given in Section 2.1, the node placement problem
can be defined as follows:

Definition 3.1. In the Node Placement Problem, for a given (directed), layered, port-
based graph G = (V, E, P, L, v) with an ordering ≺, values for y(u), u P V, y : V Ñ

R have to be found, such that the following holds:

y(u) + δ ď y(w) if w P V and u ≺ w
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3.1. Problem Statement

(a) A valid, but space wasting solution to the
node placement problem.

(b) A solution with a better balancing and
space usage.

Figure 3.3. The effects of different node placements.

Table 3.1. Aesthetics criteria connected to node placement, as presented by Sugiyama et al.

Criterion Explanation

C Reflects whether an edge is drawn straightly, or not.
D Distance between connected vertices.
E Balancing of connected vertices, w.r.t. a given vertex.

As Figure 3.3 shows, a node placement which fulfils the requirements of
the problem does not necessarily look aesthetic or is easy to read. For a better
discussion of these problems, Sugiyama et al. presented aesthetics criteria, as seen
in Section 2.3. Furthermore, they connected several criteria to each phase of their
algorithm to show which aesthetic criteria are influenced by which phase [STT81].
According to them, node placement influences the straightness of long edges, the
closeness of connected vertices, and the balance of the layout. A short reminder of
the criteria and their names is given in Table 3.1. A modified version of Figure 3.3,
shown in Figure 3.4, depicts how these criteria are influenced by different node
placements, which can be considered good or bad with respect to the aesthetics
criteria. In the figure, the criteria are only displayed for the leftmost vertex and its
connected edges, to keep the diagram clear.

To get a better hold of the problem of creating a node placement that will be
considered good with respect to the aesthetics criteria, Sugiyama et al. defined
optimization problems [STT81]. For criterion D, the closeness of connected objects,
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(a) The aesthetics criteria in the space wast-
ing solution.
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(b) The aesthetics criteria in the balanced
solution.

Figure 3.4. The aesthetics criteria influenced by node placement.

an optimization problem can be formulated like this:

Definition 3.2. To achieve an optimal fulfilment of criterion D, the following term
must yield the minimal value over all possible node placements complying with
Definition 3.1:

∑
(p,q)PE

(y(p)´ y(q))2

By solving this optimization problem, the edge lengths of the graph are mini-
mized subject to the boundaries of the node placement problem.

Another optimization goal can be the criterion E:

Definition 3.3. To achieve an optimal fulfilment of criterion E, the following term
must yield the minimal value over all possible node placements complying with
Definition 3.1:

∑
wPV

(
y(w)´ ∑

uPsucc(w)

y(u)
|succ(w)|

)2

+ ∑
wPV

y(w)´ ∑
uPpred(w)

y(u)
|pred(w)|

2

With this term, a balanced layout is favoured by relating the vertex’s placement
to the placement of its neighbours.

The final aesthetics criterion influenced by node placement is criterion C, which
concerns the straightness of edges. A possible definition can be given by means
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(a) Unbalanced node placement with two
edge bends.

(b) Balanced node placement with four edge
bends.

Figure 3.5. The number of edge bends usually increases, when balancing is applied.

of a weight function ω(e), ω : E Ñ R, which describes the importance of drawing
edge e straightly:

Definition 3.4. To achieve an optimal fulfilment of criterion C, the following term
must yield the minimal value over all possible node placements complying with
Definition 3.1:

∑
e=(p,q)PE

ω(e) ¨ |y(p)´ y(q)|

While |y(p)´ y(q)| determines the straightness of an edge, the weight function
allows to foster the straightness of edges with certain characteristics, e. g., by
choosing the length of an edge as a weight to have straight longer edges yield a
smaller result of the term. When orthogonal edge routing is applied, as described
in subsection 2.4.1, non-straight edges might have a larger impact on readability,
since every non-straight edge will introduce at least two edge bends.

The simple example shown in Figure 3.5 shows that the goals of criteria C and
E can contradict each other, resulting in trade-offs which may have to be made on
either side.

The search for a minimal result for the three concerned criteria is a complex
task. To achieve a feasible result in an acceptable run time, heuristics are applied.
Usually, these heuristics favour certain criteria over others, resulting in rather
different node placements. The node placement heuristic presented in this thesis
is based on an approach by Brandes and Köpf. Their approach and performed
extensions and modifications will be presented in the next section.
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3.2 Approach

With the node placement problem in mind, this section will now deal with a
heuristic that offers a solution which approximates an optimal solution of the
optimization problems given in the previous section. The approach presented
here is based on an approach introduced by Ulrik Brandes and Boris Köpf [BK02].
Hence, the first thing to do is to provide a detailed description of their algorithms
that goes a bit further into the details than the original paper.

After that, the modifications and enhancements of the approach developed as
part of this thesis are explained and discussed, showing how a larger variety of
graphs can be laid out, how more power can be given to the user, and how the
node placement phase can be made more robust.

3.2.1 The approach of Brandes and Köpf

The approach to node placement as proposed by Brandes and Köpf bases on the
idea of aesthetics criteria as presented in Section 3.1, trying to give a heuristic
which satisfies the three criteria mentioned above as well as possible. Especially
the straightness of long edges is regarded, but also the closeness and the balancing
of connected vertices are in the focus of the algorithm.

The terminology and calculations of the original algorithm assume a top-to-
bottom layout. Since in the context of KLay Layered a left-to-right layout is assumed,
the descriptions and algorithms in the following will be modified accordingly
where necessary. Nevertheless, the naming of the parts of the algorithm will follow
the original naming by Brandes and Köpf to avoid confusion when comparing or
double-checking with the original approach. Mainly, the modifications will consist
of switching x and y coordinates.

Brandes and Köpf assume a layered graph without ports. As mentioned in
Section 2.1, a port-based graph can be used with any algorithm that deals with
graphs without ports by introducing a mapping function v : P Ñ V. Nevertheless,
ports introduce new challenges in terms of creating a good and readable layout,
thus, modifications might be necessary to satisfy aesthetics criteria again. The
approach by Brandes and Köpf will be explained assuming a portless graph. The
necessary modifications to get good results for port-based graphs will be presented
in a later section.
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Basic idea

The basic idea of the algorithm is to align connected vertices by assigning the same
y coordinate. To achieve that, the graph is traversed in four different directions to
group connected vertices, each resulting in a separate candidate node placement.
The edges between the members of these groups will be drawn straightly. Keep in
mind that the basic approach assumes a vertex size of 0. If there are two or more
possibilities for an alignment, dummy vertices of long edges will be favoured, to
achieve a straight drawing of long edges. If the choice is between vertices of the
same kind, the first vertex with respect to the traversal direction is chosen.

The final node placement is determined by taking the node placement which
has the smallest height. This placement may now be balanced by creating an
average with the other three results.

In the following, all four steps of the algorithm are described, starting with an
introduction of terms and models used in the context of the algorithm.

Algorithm-specific terminology

The first thing to notice about the terminology used by Brandes and Köpf is the
classification of the different types of edge crossings, called conflicts, that might
occur between vertices in adjacent layers. The definitions base on the concept of
inner and outer segments as presented in Definition 2.5. Remember that inner
segments are edges between two dummy vertices, while outer segments are edges
connected with at least one regular vertex.

Ź Type 0 conflict: This conflict occurs when two outer segments cross each other,
as shown in Figure 3.6a.

Ź Type 1 conflict: This conflict occurs when an inner and an outer segment cross
each other, as shown in Figure 3.6b.

Ź Type 2 conflict: This conflict occurs when two inner segments cross each other,
as shown in Figure 3.6c.

As mentioned before, the graph is traversed in different directions. For every
iteration, a combination of a horizontal and a vertical direction is chosen, resulting
in a total of four combinations. In the original paper of Brandes and Köpf, the
direction names were chosen having a top-to-bottom layout in mind. The directions
given here refer to a left-to-right layout and have to be mentally switched when
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L0 L1

(a) Two outer segments crossing, resulting
in a type 0 conflict.

L0 L1 L2 L3

(b) A type 1 conflict, an inner and an outer
segment cross.

L0 L1 L2 L3

(c) A crossing between two inner segments
creates a type 2 conflict.

Figure 3.6. The three different conflict types.

comparing algorithms from this thesis with the original approach. The four
directions are defined as follows:

Ź LEFT and RIGHT: These refer to the order in which the layers of the graph are
traversed. If the direction is RIGHT, and the layered graph consists of n layers,
the layers are traversed from L0 to Ln´1, and vice versa in the case of a LEFT
direction.

Ź DOWN and UP: These refer to the order in which the vertices in each layer are
traversed. If the direction is DOWN, the vertices are traversed from Li(0) to
Li(|Li| ´ 1), and vice versa in the case of a UP direction.

An overview of the possible iteration directions is shown in Figure 3.7.
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L0 L1 L2 L3

DOWN UP

RIGHT

LEFT

Figure 3.7. The iteration directions; a horizontal and a vertical direction are chosen in each
iteration.

In the four iterations of the two main steps of the algorithm, the graph’s vertices
are partitioned into subsets of V for each of the direction combinations. The two
possible elements which form a partitioning result are called blocks and classes:

Ź Block: Given n layers, a block consists of one to n vertices from subsequent
layers, and represents the alignment which is determined by the algorithm. Only
one vertex from each layer may be part of a block, limiting in the maximal block
size to n. Depending on the direction of the current iteration, the first vertex
in the alignment block is called the root of the block. If the direction of the
respective iteration was RIGHT, the root vertex is part of the leftmost layer of
all vertices in the block. In the case of a LEFT direction, the root vertex is in
the rightmost layer of all vertices in the block. All vertices in a block will be
assigned the same y coordinate. Furthermore, a block guarantees that all edges
between vertices inside a block will be drawn straightly. Figure 3.8a shows a
graph, Figure 3.8b gives the partitioning of the graph into blocks.

Ź Class: The partitioning into classes is derived from the partitioning into blocks
by forming a block graph from it. This is done by connecting the vertices of a
layer with their antecedent vertex in the layer ordering (if present) in iteration
direction (DOWN or UP) with directed edges and merging the vertices of a block
into a single, large, and possibly layer-spanning vertex. Now, the class of a block
is determined by merging blocks in vertical iteration direction, until a reachable
block is found, who is topmost or bottommost in its layer’s vertex order and
whose root vertex is in the leftmost or rightmost layer, depending on horizontal
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L0 L1 L2 L3 L4

(a) A properly layered graph.

L0 L1 L2 L3 L4

(b) A partitioning of the given graph into
blocks.

L0 L1 L2 L3 L4

(c) The corresponding partitioning into
classes, if layout direction was UP.

Figure 3.8. Different partitionings of a graph.

iteration direction. For example, the block partitioning from Figure 3.8b is
transformed into a block graph. Then, classes are formed, resulting in the
partitioning given in Figure 3.8c. As one can easily see, the class graph can be
compacted by moving the lower right class and its containing vertices up.

With these terms and concepts in mind, a closer look at the original approach
of Brandes and Köpf, with the before mentioned adjustments, can now be taken.

A final remark before diving deeper into the algorithms of the approach: The
algorithms given in the following are slightly modified in comparison to the
algorithms given in the original approach by Brandes and Köpf. The most notable
changes are indices starting with zero (instead of one) and the inclusion of code
for all possible iteration directions, not only for the combination RIGHT and
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DOWN. Furthermore, minor mistakes, which were also corrected by the authors,1

are corrected here, too.

Mark conflicts

The first step of the node placement algorithm by Brandes and Köpf consists of a
preprocessing, which investigates edge crossings and marks type 1 crossings for a
special treatment following later. For this first step, the possible iteration directions
can be ignored, since they play no role in the conflict type decision. The algorithm,
given in Listing 3.1, traverses the layers from left to right with the current layer
being Li, starting with the second layer. This is because only inner segments cause
type 1 conflicts, and inner segments can not exist between the first and second layer
since the long edge would need a regular source vertex before the first layer. The
traversal of the graph ends with the second last layer, for the same reason.

Listing 3.1. Step 1: The mark conflicts algorithm.

1 for i = 1 , . . . , |L| ´ 2 do
2 k0 = 0 ; l = 0 ;
3 for l1 = 0 , . . . , |Li+1| ´ 1 do
4 i f l1 == |Li+1| ´ 1 or v(i+1)

l1
incident to inner segment between Li+1 and Li then

5 k1 = |Li| ´ 1 ;

6 i f v(i+1)
l1

incident to inner segment between Li+1 and Li then

7 k1 = pos(pred(v(i+1)
l1

)[0])
8 end i f
9 while l ď l1 do

10 foreach v(i)k : pred(v(i+1)
l ) do

11 i f k ă k0 or k ą k1 then mark segment (v(i)k , v(i+1)
l ) ;

12 end foreach
13 l = l + 1 ;
14 end while
15 k0 = k1 ;
16 end for
17 end for

The loop starting in line 3 iterates over the vertices of the next layer after Li

(Li+1). It is then checked, whether the current vertex (v(i+1)
l1

) is the last vertex in
the layer or whether it is part of an inner segment between Li and Li+1. If that
is the case, the auxiliary variable k1 is set to the position of the last node in Li.

1http://www.informatik.uni-konstanz.de/~brandes/publications/
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Table 3.2. Variables used in the mark conflicts algorithm and their usage.

Variable Usage

i The current layer
k A predecessor in the previous layer (see line 10)
k0 Previous inner segment dummy in the following layer
k1 Inner segment dummy in the following layer
l Variable for iteration up to an inner segment dummy or the end
l1 Inner segment dummy in the following layer or the last vertex in that layer

Additionally, if v(i+1)
l1

was part of an inner segment, the variable k1 is set to the

position of the predecessor of v(i+1)
l1

. This can be done because if an inner segment
between Li and Li+1 is present, the vertex in Li+1 has exactly one predecessor.

Then, the while-loop starting in line 9 iterates over the vertices in Li+1 that
come before v(i+1)

l1
in the layer ordering. For these vertices, the predecessors (v(i)k )

are traversed. A possible crossing is now detected by comparing the auxiliary
variables with the position k in layer Li of v(i)k . In the first iteration, it is only
relevant whether k is greater than k1. This would indicate, that a vertex whose
layer order position is above v(i+1)

l1
has an edge to a vertex which is below the

single predecessor of v(i+1)
l1

in layer order of Li, thus being part of a type 1 or type
2 conflict. The original approach assumes that type 2 conflicts are eliminated in
an earlier phase, something that is not necessarily the case in KLay Layered. The
handling of type 2 conflicts will be discussed in the implementation section.

The edge causing the conflict by crossing the inner segment of v(i+1)
l1

is marked
by storing the information in a global list. The final step of the for-loop starting
in line 3 is setting the auxiliary variable k0 to the layer position of v(i+1)

l1
. With

this, future iterations notice in line 11, whether an edge between Li and Li+1 has
a source vertex below the predecessor of v(i+1)

l1
and a target vertex above v(i+1)

l1
in

layer order. This would also introduce a type 1 conflict that requires marking.

After one run of this algorithm, which can obviously be done in linear time, all
non-inner segments causing a type 1 conflict are marked for future use in a later
step of the algorithm. This leads to the next step, the partitioning of the graph into
blocks, called vertical alignment.
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Vertical alignment

The second step of the algorithm is called vertical alignment by Brandes and Köpf
and deals with the partitioning of the graph into blocks, as introduced earlier
in this section. In this step, the choice of iteration directions becomes important,
since several lines have to be modified to fit the selected direction. To symbolize
this in the code given in Listing 3.2, the affected lines of code are marked with
either (LEFT) or (RIGHT) and (DOWN) or (UP). This means that if for example
the direction LEFT is chosen, then all lines marked with (LEFT) are included in
the code, while all lines marked with (RIGHT) are excluded. The same applies to
the markers (DOWN) and (UP), who are also mutually exclusive. This method of
displaying the code will also be used in other algorithms in this section.

Listing 3.2. Step 2: The vertical alignment algorithm.

1 i n i t i a l i z e root [ v ] = v , @v P V ;
2 i n i t i a l i z e a l i g n [ v ] = v , @v P V ;
3 for i = 0 , . . . , |L| ´ 1 do (RIGHT)
4 for i = |L| ´ 1 , . . . , 0 do (LEFT )
5 r = ´1 ; (DOWN)
6 r = 8 ; (UP)
7 for k = 0 , . . . , |Li| ´ 1 do (DOWN)
8 for k = |Li| ´ 1 , . . . , 0 do (UP)

9 i f v(i)k has predecessors u0 ≺ ... ≺ ud with d ą 0 then (RIGHT ) (DOWN)

10 i f v(i)k has successors u0 ≺ ... ≺ ud with d ą 0 then (LEFT ) (DOWN)

11 i f v(i)k has predecessors ud ≺ ... ≺ u0 with d ą 0 then (RIGHT ) (UP)

12 i f v(i)k has successors ud ≺ ... ≺ u0 with d ą 0 then (LEFT ) (UP)

13 for m =
⌊

d+1
2

⌋
´ 1,

⌈
d+1

2

⌉
´ 1 do

14 i f a l i g n [ v(i)k ] == v(i)k then
15 i f (um, v(i)k ) not marked and r ă pos(um) then (DOWN)

16 i f (um, v(i)k ) not marked and r ą pos(um) then (UP)

17 a l i g n [ um ] = v(i)k ;

18 root [ v(i)k ] = root [ um ] ;

19 a l i g n [ v(i)k ] = root [ v(i)k ] ;
20 r = pos(um) ;
21 end i f
22 end i f
23 end for
24 end i f
25 end for
26 end for
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In the beginning of the algorithm, the data structures for storing the blocks are
initialized. They consist of two maps that include every vertex in the graph as key.
In the beginning, each vertex points to itself. After the execution of this algorithm,
every vertex in the root map will point to the root vertex of the block it belongs
to. This alone is enough to represent the partitioning into blocks, but for more
convenience in later algorithms, the align map is also created. In this, every vertex
points to the next vertex in the same block, or to the first vertex of the block in case
of the last vertex. Thus, a vertex in a block containing only one vertex points to
itself.

The algorithm then traverses the graph with respect to the chosen directions,
starting with either the first or the last layer. The second loop then starts with either
the first vertex in layer ordering or the last one, again depending on the choice of
direction. The variable r indicates the position of the most recently aligned vertex
in the neighbouring layer the alignment takes place with, to make sure that blocks
do not cross each other. Thus, the variable has to be set to ´1 if the traversal of
the layer starts with the vertex at position 0, or to 8 if the traversal starts with the
vertex with the greatest position number.

The alignment of the blocks themselves takes place in a look-back manner, e. g.,
if a node from L2 is investigated and the direction is RIGHT, the predecessors are
regarded for alignment. This means, vertices for alignment will be found in L1.

Lines 9 to 12 check for the presence of the correct kind of neighbours (pre-
decessors or successors, depending on iteration direction) and deliver them in
the right order, again with respect to the choice of directions. Of all discovered
neighbours, the median two are chosen for a possible alignment. Even if there is
only one neighbour, the single neighbour not automatically chosen, but is further
investigated as follows.

First of all, the vertex to align may not be part of another block, which is
checked in line 14. The lines 15 and 16 use the list of marked type 1 conflicts
created in step one to avoid alignment of type 1 conflicting outer segments, thereby
solving a type 1 conflict in a way which would prevent a long edge from being
drawn straightly. Additionally, the variable r is used to prevent crossing blocks,
by disallowing alignment with a vertex which is before (or after, depending on
direction) an already aligned vertex in layer ordering.

The lines 17 to 20 update the data structure as described above if a candidate
fulfils all requirements for an alignment.

This algorithm is executed four times, once for each possible combination
of LEFT and RIGHT with DOWN and UP. The graph now has four possible
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partitionings in blocks and is ready for a further partitioning into classes in the
next step.

Horizontal compaction

The third step of the node placement approach by Brandes and Köpf consists of a
further partitioning of the four already present block partitionings and results in
four proposals for final coordinates. The latter might be refined by balancing the
vertices with respect to their edges by considering all four coordinate proposals.

The general idea is to place the blocks one by one, in an order which is given
by the iteration direction. Later blocks have to avoid the already placed blocks by
being placed far enough above or below the already placed blocks, preserving the
vertex order inside each layer while doing this. During this process, it is checked
whether any blocks may be merged to classes, such that the class partitioning can
be used for further compaction.

Listing 3.3. Step 3: The horizontal compaction algorithm.

1 function place_block ( v )
2 i f y [ v ] unde f ined then
3 y [ v ] = 0 ; w = v ;
4 repeat
5 i f pos(w) ą 0 then (DOWN)
6 i f pos(w) ă |L(w)| ´ 1 then (UP)
7 u = root [ f ore(w) ] ; (DOWN)
8 u = root [ f oll(w) ] ; (UP)
9 place_block ( u ) ;

10 i f s ink [ v ] == v then s ink [ v ] = s ink [ u ] ;
11 i f s ink [ v ] ‰ s ink [ u ] then
12 s h i f t [ s ink [ u ] ] = min ( s h i f t [ s ink [ u ] ] , y [ v ] ´ y [ u ] ´ δ ) ; (DOWN)
13 s h i f t [ s ink [ u ] ] = max( s h i f t [ s ink [ u ] ] , y [ v ] + y [ u ] + δ ) ; (UP)
14 e lse
15 y [ v ] = max( y [ v ] , y [ u ] + δ ) ; (DOWN)
16 y [ v ] = min ( y [ v ] , y [ u ] ´ δ ) ; (UP)
17 end i f
18 end i f
19 w = a l i g n [ w ] ;
20 u n t i l w = v
21 end i f
22 end function
23
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24 i n i t i a l i z e s ink [ v ] = v , @v P V ;
25 i n i t i a l i z e s h i f t [ v ] = 8 , @v P V ; (DOWN)
26 i n i t i a l i z e s h i f t [ v ] = ´8 , @v P V ; (UP)
27 i n i t i a l i z e y [ v ] = undefined , @v P V ;
28

29 for i = 0 , . . . , |L| ´ 1 do (RIGHT)
30 for i = |L| ´ 1 , . . . , 0 do (LEFT )
31 for k = 0 , . . . , |Li| ´ 1 do (DOWN)
32 for k = |Li| ´ 1 , . . . , 0 do (UP)
33 v = Li(k) ;
34 i f root [ v ] = v then place_block ( v ) ;
35 end for
36 end for
37

38 for i = 0 , . . . , |L| ´ 1 do (RIGHT)
39 for i = |L| ´ 1 , . . . , 0 do (LEFT )
40 foreach v : v P Li do
41 y [ v ] = y [ root [ v ] ] ;
42 i f v == root [ v ] and s h i f t [ s ink [ v ] ] ă 8 then (DOWN)
43 i f v == root [ v ] and s h i f t [ s ink [ v ] ] ą ´8 then (UP)
44 y [ v ] += s h i f t [ s ink [ v ] ] ;
45 end i f
46 end foreach
47 end for

(Again, several lines of the horizontal compaction algorithm given in Listing 3.3
are flagged with a mark for the different iteration directions to distinguish the lines
to be used in the different cases.)

The first thing to notice is the auxiliary function place_block(v), starting in line
1. It provides a first assignment of a y coordinate to a block, which may be changed
later on, if the class containing the block is moved due to compaction. The block
is placed by starting with v, iterating over all vertices in the block to find the y
coordinate closest to 0, whose choice would not result in breaking order or spacing
constraints.

To achieve this, the forerunner, or follower in case of UP placement, in layer
ordering of the current vertex is taken for comparison, called u in the following.
Since u might be part of a block which should be above the block of v, but was not
placed yet, e. g., because the block of v starts in an earlier layer and the block of
u in a later one, the block of u is placed with the place_block function first. After
that, the block of v is added to the class of u in line 10, if v was not part of a class
yet.
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If v and u are from different classes, a possible compaction is calculated in
lines 12 and 13. If however v and u share the same class, the block of v is placed
before or behind the block of u, depending on iteration direction, with respect to
the minimum separation constraint δ. When the block of v was the first block to be
placed in all concerned layers, the y coordinate is set to 0.

The values of sink, describing the root vertex of the highest or lowest block
reachable in the block graph, and thus determining the class of a block, shift, a
value by which a whole class can be moved for compaction, and y, the proposed y
coordinates, are initialized before the first call of place_block, in lines 24 to 27.

After that, place_block is called for the root vertices of all blocks (and thus for
all blocks) with respect to the iteration direction. The function ignores already
placed blocks, which may occur due to recursive call inside place_block itself.

The for loop in the lines 38 to 47 finally distributes the coordinates of a block
to all of its containing vertices to determine the individual placement. The y
coordinate of a block is stored in its root vertex, thus, the y coordinate of the
root vertex is assigned to all vertices in the block. Furthermore, the compaction
calculated before is applied if the current node is a root node and thus represents a
block.

In the original paper by Brandes and Köpf, line 42 read "if shift[sink[root[v]]]

ă 8 then". That could lead to multiple applications of the class offset and has to
be corrected to the version given in Listing 3.3. As mentioned before, the authors
also offered an erratum concerning this mistake.

With this algorithm finished for all the four direction combinations, four possible
y coordinate assignments for an approximative solution to the node placement
problem are present. The solutions normally have good results with respect to
straightness and edge length, but are rather unbalanced due to the alignment to
either DOWN or UP. If a more balanced placement is desired, the four solutions
can be combined into a single, but balanced node placement.

Balancing

The final step of the original approach by Brandes and Köpf uses the four layout
proposals calculated in the steps before to merge them into a single result, with
a good compromise between balancing, edge length and edge straightness. To
achieve this, the layout proposal with the smallest height is selected as a foundation
for the combination. Then, the median position of all proposals is chosen for each
vertex and is used to shift the vertices to a balanced position. This method, with a
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possible algorithm given in Listing 3.4, provably preserves the order and separation
constraints of the graph [BK02].

Let lLD, lLU , lRD, lRU be the four proposed layouts, with L, R, D, U representing
the four possible directions. Lines 1 to 6 discover the layout proposal with the
smallest height and store the minimal and maximal y coordinate for each layout
proposal. Lines 8 to 11 determine the diversion of all proposals from the cho-
sen minimal proposal, by checking either the minimal or maximal y coordinate,
depending on the compared proposal’s iteration directions.

Lines 13 to 19 conclude the balancing algorithm by iterating over all vertices.
For each vertex, the coordinates from every layout proposal are taken and the
diversion from the minimal proposal is added. The median two coordinates are
averaged and used as a new position for the respective vertex.

Listing 3.4. Step 4: The balancing algorithm.

1 foreach l : l P {lLD, lLU , lRD, lRU} do
2 min [ l ] = min(l.y) ;
3 max[ l ] = max(l.y) ;
4 height [ l ] = max[l]´min[l] ;
5 end foreach
6 lmin = l with height [ l ]== min(height ) ;
7

8 foreach l : l P {lLD, lLU , lRD, lRU} do
9 s h i f t [ l ] = min [ lmin ] ´ min [ l ] ; ( lLD, lLU )

10 s h i f t [ l ] = max[ lmin ] ´ max[ l ] ; ( lRD, lRU )
11 end foreach
12

13 foreach v : v P V do
14 foreach l : l P {lLD, lLU , lRD, lRU} do
15 loca lY [ l ] = l.y [ v ] + s h i f t [ l ] ;
16 end foreach
17 s o r t ( loca lY ) ;
18 ybal [ v ] = localY[1]+localY[2]

2 ;
19 end foreach

With this, the final node placement is given by the map ybal , which maps every
vertex to a y coordinate. The original approach by Brandes and Köpf is concluded
with this step. An example result of the balancing, in comparison to the unbalanced
layout of Figure 3.9a, is depicted in Figure 3.9b. (The given examples were created
with the graph drawing tool of the KIELER tool.) However, for the approach to
work properly, all vertices have to have the same size, an assumption, which is
difficult to hold in a practical application. KLay Layered explicitly supports different
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(a) A graph, laid out without the final bal-
ancing step, with the directions LEFT and
UP.

(b) The same graph, with the final balancing
step applied.

Figure 3.9. The effect of balancing.

Figure 3.10. Perfectly aligned vertices inside a block, with unnecessary edge bends due to
eccentric port positioning.

vertex sizes and thus, further modifications are needed to use this approach in the
KLay Layered environment. Furthermore, the usage of port-based graphs poses
even more requirements. The following sections will describe the modifications
necessary for the support of such features.

3.2.2 Introducing vertex size and ports

One of the core aspects of the approach by Brandes and Köpf is the straightness
of lines. As seen before, it is achieved by the alignment of vertices, which leads to
having the start and end point of every edge in the block on the same y coordinate.
In a practical application, several constraints are required for the approach to
work. Vertex size and port positions would have to be uniform across all vertices—
otherwise, problems such as unnecessary edge bends and even vertex overlaps
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would occur. An example for unnecessary edge bends which occur although the
vertices are perfectly aligned is given in Figure 3.10. The problem of vertex overlaps
can easily imagined be by mentally enlarging any vertex in Figure 3.9 without
modifying the rest of the graph.

It is not possible to allow constraints like a uniform vertex size or ports that
are always placed centred on a vertex in KLay Layered. Furthermore, KLay Layered
allows connected vertices in the same layer, e. g., in case of inverted ports who
introduce a dummy vertex in the same layer. This would lead to vertices placed on
top of each other if there are vertices from the same layer in the same block. These
problems have to be solved to allow integrating this node placement algorithm into
KLay Layered.

Fortunately, the latter problem can be solved rather easily by redefining the
predecessors and successors terms.

Definition 3.5. pred(u) = {v(p) : (p, q) P E, v(q) = u, L(v(p)) ‰ L(v(q))} denote
the predecessors of u in a directed graph. Likewise, succ(u) = {v(r) : (q, r) P
E, v(q) = u, L(v(q)) ‰ L(v(r))} denote the successors of u in a directed graph.

Note that it is now disallowed to have predecessors or successors in the same
layer. With that, alignment between vertices of the same layer is prevented, since
lines 9 to 12 of Listing 3.2 use these relations to determine vertices for alignment in
blocks. This is no problem for the general alignment, since the edges of inverted
ports have to have a dummy vertex exactly above the vertex from which they were
created and do not need to be aligned in any way with their source or target vertex.
Beside that, they are treated as a regular vertex when it comes to alignment with
vertices from other layers.

The problems of differing vertex sizes and port positions are more demanding,
but it is possible to solve them by integrating an additional step into the node
placement algorithm the task of which would be to determine the space needed by
every block individually. Furthermore, it should investigate whether the vertices
inside a block may be moved in a way that allows edges to be drawn straightly,
even if eccentric port positions are present. In addition, the horizontal compaction
step would have to be modified to take the results of the new step into account.

The first idea of a naive approach to this problem was to assume a fixed block
size with relation to its contained vertices, for example twice the size of the largest
vertex or the sum of all vertex sizes. With this, the blocks have enough space, which
might also be used to shift the other vertices inside a block up or down to get the
edges as straight as possible. Although this approach is very easy to implement,
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Figure 3.11. A block with double the size of its largest vertex that is still not large enough
to reserve enough space for alignment, due to inauspicious port positions.

there are several disadvantages to it. On the one hand, the approach might lead to
a lot of wasted space, since so many space should only rarely be required. On the
other hand, if the port positions are really inauspicious, this approach might lead
to vertices placed outside the bounds of the containing blocks, as the example in
Figure 3.11 shows.

The naive solution to the latter problem, using the sum of all vertex heights as
block size, would result in even more wasted space, and can thus be discarded.

A more feasible solution is to calculate the actually required space subject to
vertex size and correct alignment. This is done by comparing the port positions
of neighbouring vertices and shifting them such that the ports have the same y
coordinates. The shift distance and the size of the vertices is then used to calculate
the overall space needed by the block. This step has to be done for all the four
iterations which result from the different combinations of layout directions, since
the partitioning into blocks differs depending on the respective choice of direction.

An algorithm for solving the problem in this way is given in Listing 3.5. The
two values to be calculated (shift and block size) are stored in maps, initialized in
line 1 and 2. A so called inner shift determines the distance by which the vertices
have to be moved relative to their calculated final y coordinate to have their port
on the same height as the connected neighbour in the same block. The block size is
associated with the root vertex of a block and is chosen to be as small as possible,
with vertex sizes and shifting in mind.

The for loop starting in line 4 iterates over all root vertices, and thus over all
blocks of the current partitioning of the graph. Initially, the height of the block
stored in hBlock is set to the height of the root vertex. For accessing necessary values
in the pseudo code, let height : V Ñ R deliver the vertical dimension of a vertex
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and portPos : P Ñ R the vertical position of the port, relative to the upper left
corner of its vertex. The top border of the block, tBlock, is set to 0, the lower border,
bBlock, is also set to the height of the root vertex.

Listing 3.5. Step 2.5: The inside block shift algorithm.

1 i n i t i a l i z e i n n e r _ s h i f t [ v ] = 0 , @v P V ;
2 i n i t i a l i z e b l o c k _ s i z e [ v ] = 0 , v P {root[u]|u P V} ;
3

4 foreach v : v P {root[u]|u P V} do
5 hBlock = height(v) ;
6 tBlock = 0 ; bBlock = height(v) ;
7 x = v ; y = align[x] ;
8 i f De = (p, q) : v(p) = x and v(q) = y and v(p) ‰ v(q) then
9 tBlock = portPos(p) ;

10 bBlock = height(x)´ portPos(p) ;
11 end i f
12 while y ‰ v do
13 e = (p, q), v(p) = x, v(q) = y ;
14 i n n e r _ s h i f t [ y ] = portPos(p)´ portPos(q)+ i n n e r _ s h i f t [ x ] ;
15 t1

Block = portPos(q) ;
16 b1

Block = height(y)´ portPos(q) ;
17 i f t1

Block ą tBlock then tBlock = t1
Block ;

18 i f h1
Block ă hBlock then hBlock = h1

Block ;
19 x = y ; y = a l i g n [ y ] ;
20 end while
21 i f a l i g n [ v ] ‰ v then hBlock = tBlock + bBlock ;
22 x = v ; y = align[x] ;
23 i f tBlock ą portPos(p), e = (p, q) : v(p) = x and v(q) = y then
24 i n n e r _ s h i f t [ v ] = i n n e r _ s h i f t [ v ] + tBlock ;
25 while y ‰ v do
26 i n n e r _ s h i f t [ y ] = i n n e r _ s h i f t [ y ] + tBlock ;
27 x = y ; y = a l i g n [ y ] ;
28 end while
29 end i f
30 b l o c k _ s i z e [ v ] = hBlock ;
31 end foreach

The auxiliary variables x and y are used for iterating over the block’s vertices,
starting with the root vertex and the possible next vertex in the block alignment. If
the block only consists of one vertex, x is equal to y.

Before the iteration starts, lines 8 to 11 make sure that the first two ports
connected to the root vertex and the first aligned vertex are taken into account for
the calculation of the block size, if there are more vertices than the root vertex in
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(a) A block with no post shift applied. (b) The same block using post shift to "push"
the vertices inside the boundaries of the
block.

Figure 3.12. When no post shift is applied, vertices may extend the boundaries of a block.

the block. This is necessary because if the block only consists of the root vertex, the
top and bottom border of the block are the same as the root vertex’s boundaries.
If shifting is applied, which is the case if there is more than one vertex inside the
block, the boundaries of the block are relative to the port positions.

During the iteration, the edge that connects the vertices x (through port p) and
y (through port q), is determined. Such an edge always exists since the vertices
of a block, which are in neighbouring layers, have at least one edge that connects
them. In case of a self-loop, the edge is ignored. The difference in vertical position
between the two ports is calculated and stored as inner shift for y, with the inner
shift of x as an additional offset. After that, lines 15 to 18 check the boundaries of
vertex y and adjust the block’s borders if necessary. Line 19 completes the iteration
by moving the pointers forward. The loop stops once y points to the root vertex.

If the block consists of more than one vertices, the block size is determined in
line 21 by adding the sum of the sizes of the top and bottom border. Finally, if the
top border of the block extends higher than the root vertex, a post shift has to be
applied since the placement of all vertices in a block depend on the root vertex. The
block’s vertices are moved down by the height of the top border. This is because
the border was determined from the greatest distance between a port and a vertex’s
upper border. The post shift makes sure that this vertex is not placed outside of
the block’s boundaries, as shown in Figure 3.12.

With this method, vertex size and port positions are easily integrated into
the node placement approach by adding the algorithm from Listing 3.5 as an
intermediate step between the vertical alignment and the horizontal compaction
steps. However, minor adjustments to the horizontal compaction algorithm have yet
to be made to include the block size into the calculation of the concrete positioning
of a block. Listings 3.6 and 3.7 show the lines from Listing 3.3, modified for taking
the newly introduced block size into account.
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Listing 3.6. Modifications to the class compaction calculation from step 3.

12 s h i f t [ s ink [ u ] ] = min ( s h i f t [ s ink [ u ] ] , y [ v ] ´ y [ u ] ´ blockSize[u] - δ ) ; (DOWN)

13 s h i f t [ s ink [ u ] ] = max( s h i f t [ s ink [ u ] ] , y [ v ] + y [ u ] + blockSize[v] + δ ) ; (UP)

Listing 3.7. Modifications to the block position calculation from step 3.

15 y [ v ] = max( y [ v ] , y [ u ] + blockSize[u] + δ ) ; (DOWN)

16 y [ v ] = min ( y [ v ] , y [ u ] ´ blockSize[v] - δ ) ; (UP)

With these modifications, the node placement approach by Brandes and Köpf
is enhanced with the abilities of dealing with vertices of any size and of aligning
vertices in a way which yields straight edges regardless of port positioning. The
runtime performance of the additional algorithm is obviously linear, since there
is only one iteration over every vertex, with respect to the block partitioning.
Especially the ability of handling larger, differently sized vertices can be of great
importance in a practical application. Some tools, e. g., KIELER, allow nested graphs,
to express the complex interior of certain vertices. These vertices tend to become
very large, to keep their content readable. With the presented modifications,
diagrams of this kind can be used in connection with the approach by Brandes and
Köpf. An example, taken from the KIELER Actor-Oriented Modelling (KAOM) editor,
laid out with KLay Layered with this new approach already integrated, is given in
Figure 3.13. The meaning of the diagram is of no further importance; what is of
importance is, that many different vertex sizes can be handled.

Besides the enhancement of the functionality of the node placement approach,
it is also possible to modify or enhance this implementation of a phase of the KLay

Layered algorithm on a different level. The following section will deal with such
meta modifications, coping with the effect of balancing on the number of edge
bends and how to handle difficult and error-prone graph constellations.

3.2.3 Balancing and fault tolerance

Section 2.3 contains a list of criteria for evaluating different aspects of a layout,
especially focussing on the aesthetics and readability of a graph. Optimizing a
layout for all of these goals is difficult to say the least, since most of them contradict
each other. In the following, the focus will lie on two such criteria: the straightness
of edges and te balancing of outgoing connections. Section 3.1 already reasoned that
there is a conflict between these two criteria: in unfortunate cases, the mathematical
optimum of the two may result in a compromise which fulfils both only partly. The
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Figure 3.13. A nested graph with large vertices.

result is slightly odd edges and a slight unbalance. It may be even worse in the
case of orthogonal edge routing, since every odd edge introduces unwanted edge
bends.

Instead of an unsatisfying compromise, one usually wants to choose one crite-
rion over a conflicting other criterion. It may also be a favourable way to let the user
decide what is more important to him. Because of that, the flow structure of the
original approach by Brandes and Köpf was changed to introduce more freedom
of choice to the user. Instead of using the fourth balancing step as a fixed part of
the node placement phase, it is now offered as a feature which may be turned off
and on at will. With this, the user can decide whether he wants to favour balancing
over edge bends and vice versa.

The effect of this choice can already be seen in the relatively small example
in Figure 3.9. The solution with focus on edge straightness contains twenty-two
edge bends, while the balanced solution has twenty-eight bends, or approximately
thirty-six percent more.

To provide this choice, the fourth step of the algorithm was decoupled and
a short decision algorithm was integrated to decide whether the balancing step
should be applied. If the user chooses to reduce edge bends, the four aligned
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layouts are used as possible results, since their block structure and the additional
alignment inside the blocks favour straight edges. The decision between these four
layout candidates must be made by another metric. In the given approach, the
overall size of the layout is chosen as a metric, but it is also possible to use the
overall number of edge bends as a decision criterion. The layout size was only
chosen as a criterion to avoid too much white space, since the block alignment
tends to have an especially strong effect on the height of a graph.

Another advantage that comes with this structure is that the node placement
algorithm becomes more robust. With balancing activated, the decision algorithm
has five potential layout candidates from which it can choose the final node
placement result. In the case of an activated balancing, the balanced result should
of course be favoured. But if, for any reason, the balanced solution breaks a
constraint, the decision algorithm has still four layout candidates left from which to
pick a valid solution. This makes the node placement phase more robust, since at
least four placement proposals have to be wrong for the final result to be erroneous.
This was originally necessary to avoid errors which the original approach tended
to make, due to the mistake mentioned and corrected above. In the current version,
the check could be left out, but since the check runs in linear time, it is a welcome
source of further stability.

This concludes the description of the approach to the node placement problem
chosen in this thesis. The next section will now deal with certain details of the
implementation, regarding specialities of KLay Layered or code twists going beyond
the level of detail of the already presented pseudo code.

3.3 Implementation

After the long and detailed description of the node placement approach and the
ideas behind it, the following section will deal with technical aspects. Although
they will seldom deliver a concrete contribution to the approach itself, they are still
essential for a working implementation of the presented ideas.

The first part of the section will cope with the specialities and logistics of
including the given approach into the KLay Layered algorithm. After that, a data
structure for layout candidates is presented and motivated. Finally, the section
concludes by presenting ways of dealing with special graph structures and a general
overview of a full execution of the complete node placement algorithm.
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Figure 3.14. Some layout options for KLay Layered, especially the node placement selection
and some other relevant options.

3.3.1 Implementation in the context of KLay Layered

Being a part of the KLay Layered layout algorithm, the newly created node placer
has to be integrated into its source code structure. The choice of the right package
in the Java source tree is fortunately obvious, due to the clear structure of KLay

Layered. Every phase of the algorithm, as listed in subsection 2.4.1, has its own
sub package. The new node placer is thus included in the package for phase four,
de.cau.cs.kieler.klay.layered.p4nodes.

The implementing class itself is called BKNodePlacer, in reference to the authors
of the basic approach, Ulrik Brandes and Boris Köpf. It extends AbstractAlgorithm,
the abstract base class of algorithms in the KIELER project offering a reference to
the currently used progress monitor. The progress monitor can be used to give the
user visible feedback on the steps already done and steps to follow for the current
task. Furthermore, the ILayoutPhase interface is implemented which is required by
every phase of the KLay Layered algorithm. It declares methods for the layout itself
and the required intermediate processors.

This node placer can be chosen by the user via a so called layout option in the
KIELER tool. The node placer has to be selected from a list of other implementations
for phase four, as shown in Figure 3.14. Additionally, the results of the node
placement can also be influenced by these options. For example, a balanced or
unbalanced layout can be chosen, or the minimum separation constraint δ (called
spacing in KIELER) can be changed.

On the code level, the implementation has to differ slightly from the pseudo
code given in Section 3.2. Normally, these differences are only small; for example,
the position of a port in the graph data structure, the so called LGraph, is relative to
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-HashMap<LNode, LNode> root
-HashMap<LNode, Double> blockSize
-HashMap<LNode, LNode> align
-HashMap<LNode, Double> innerShift
-HashMap<LNode, LNode> sink
-HashMap<LNode, Double> shift
-HashMap<LNode, Double> y
-VDirection vdir
-HDirection hdir

+double layoutSize()
+String toString()

BKAlignedLayout

Figure 3.15. Class diagram of the BKAlignedLayout class, storing information about a layout
candidate.

its vertex and consists of two components, the position and the anchor. They have
to be added to get the final position of the port. Other minor differences concern
loops: sometimes a for-each loop is chosen over a classical for loop. This is, because
for the different iteration directions, some lists have to be traversed reversely. It is
more tidy to reverse a list before a for-each loop than duplicating the whole loop
with the only difference being the iteration parameters.

More important than these minor differences is the distinction between source
and target of an edge in the LGraph. Especially with the switching iteration di-
rections LEFT and RIGHT, the algorithm has to be aware of the direction and
correctly choose between source and target of an edge.

3.3.2 Data structures

As seen in Section 3.2, up to five layout candidates are produced when executing
the presented node placement approach. During the execution itself, and also when
checking and perhaps balancing the layout, the numerous intermediate and final
results for each of these four to five layouts have to be stored. There exist several
ways for doing this, such as adding a dimension to each of the maps for addressing
the different layout candidates. One could also think of creating individual maps
for each candidate, since the number of candidate is fixed. Nevertheless, both
solutions lack flexibility or are even error-prone, e. g., when five candidates are
assumed in the code, but the fifth was not calculated, resulting in a null pointer or
index out of bounds exception.
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Figure 3.16. Different hierarchy levels in a graph, hierarchy crossings are done with ports.

To have a safer and more dynamic way for storing results the BKAlignedLayout

class, as given in Figure 3.15, was created. It stores all the intermediate and
final results needed for a layout candidate and offers convenience methods for
getting the size of a layout or the name of a candidate, derived from the choice
of directions. With this, the number of candidates can be adjusted as needed by
adding the BKAlignedLayout representations of all candidates to a list. The final
candidate can then be picked from this list, or it can be created by using the list’s
content to create a balanced layout as described above.

3.3.3 Support for complex structures

KLay Layered is able to deal with a large variety of different graph types. Many
different special structures in graphs have to be supported, in the least-invasive
way possible. This means that the algorithms themselves should only have to be
changed as little as possible, which can be done by mapping the complex structures
onto simpler structures that can already be processed by the algorithms.

An example already given in the context of Section 3.2 are hierarchical vertices.
In graphical modelling, hierarchical vertices are used to display the encapsulation of
another model within a vertex of the current model. This allows the user to follow
the events in an encapsulated model without switching windows, but requires the
layout algorithm to support hierarchical vertices. At first, a trivial but effective
solution comes to the mind. The layout is simply executed recursively, treating
every new level of hierarchy as an individual graph and regarding the hierarchical
vertices as normal, albeit large, vertices on their own hierarchy level.

The problems of this approach start once the connection of vertices on a higher
hierarchy level span into other hierarchy levels. One possibility to solve the problem
of inter-level-transitions are ports which connect the inner model to the outside
model on the higher hierarchy level. An example for that is also given in Figure 3.16.
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(a) A graph without edge compaction. (b) The same graph, with an edge spacing
factor of 0.5.

Figure 3.17. The effects of edge compaction using an edge spacing factor.

According to Christoph Daniel Schulze, these cases can be solved by introducing
dummy vertices for such hierarchical ports [Sch11]. These dummy vertices can
then be dealt with just like every other vertex during node placement.

To allow the insertion of dummy vertices for hierarchical ports, the intermediate
processor HierarchicalPortPositionProcessor has to be marked as required by the
node placement algorithm.

When ports are not present for inter-level-transitions, another approach has to
be found. A feasible solution to this problem in KLay Layered was developed by
Insa Fuhrmann [Fuh12]. To allow this method to work with the newly created node
placer, the node placer must make sure that certain side protection dummies are
included in the same block, to keep them straight. This is achieved by prioritizing
the alignment of these compound side vertices.

This priority is also changeable for every edge in the graph to allow customiza-
tion of the layout. Every edge can be assigned a priority which expresses the user’s
desire to have this edge drawn straightly. The algorithm will then favour the edge
with the highest priority in the alignment, if the boundaries of the algorithm allow
it.

Less a question of a special structure and more a problem of aesthetics and
wasted space is the routing of long edges that are close to another edge or a block.
Normally, the minimum separation constraint is used to leave enough space around
the vertices of a layout. In the case of an edge close to other graph elements, the
application of the minimum separation constraint may result in giving the edge
way more space than it would need for a tidy and readable layout. To prevent
this waste of space, an edge spacing factor was introduced. It allows to place two
blocks closer to each other, by reducing the minimum separation constraint by the
given factor. The test whether two blocks may be placed closer to each other than
the minimum separation constraint takes place within the place_block(v) function
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and depends on whether one of the two blocks only consist of dummy vertices or
also includes regular vertices. Figure 3.17 shows an example for the usage of the
edge spacing factor.

3.3.4 Handling of type 2 conflicts

As mentioned before, the handling of type 2 conflicts, that is, the crossing of two
inner segments as described in Section 3.2, has to be thought about since the original
approach by Brandes and Köpf assumes that there are no type 2 conflicts present.
To keep the algorithm simple, rare type 2 conflicts are treated in a greedy fashion
in the current implementation. The first conflict member in iteration direction is
aligned, resulting in the latter conflict member to not be drawn straightly. This
is also the most general solution, allowing the algorithm to stay untouched, e. g.,
when the crossing minimization phase is optimized to prevent type 2 conflicts in
the future.

3.3.5 Steps to a node placement choice

To conclude the section about implementation details, Figure 3.18 shows the overall
process of the newly implemented node placer in the practical application.

In the beginning, the algorithms described in Section 3.2 are executed, with
vertical alignment, shifting and horizontal compaction applied to each of the four
iteration direction combinations separately. After that, the additional balancing
on the foundation of the four results is executed, if desired by the user. Then,
the four or five results are checked for their validity, which is currently done by
checking whether all placed vertices fulfil the order and minimum separation
constraints. Every valid layout candidate is then used as an option in the final
choice. If balancing is activated and the balanced layout candidate is valid, it is
chosen without further hesitation. Otherwise, a metric is applied for choosing the
final candidate. In the current implementation, the metric is based on the vertical
size of the candidates, choosing the most compact of the candidates.

Once the choice is made, the coordinates from the final candidate are applied to
the graph data structure. In this step, the overall height of the graph and the width
of the layers is also determined. After this is finished, the graph data structure is
passed to the final fifth phase, the edge routing.
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Figure 3.18. The process of phase four with the new node placer.

This last summary of the whole node placement process concludes the imple-
mentation section. The final section of this chapter will evaluate results from the
new node placer and will compare them to results of other node placers.

3.4 Evaluation

Evaluating the aesthetics and looks of a layout is a non trivial task. One does not
simply take a set of diagrams and decide on their quality on one’s own, since the
requirements a person has to a good layout may be strongly subjective. To solve
this problem scientifically, different approaches exist. An user oriented approach is
the evaluation of layout quality by running a study with a statistically significant
amount of test subjects, e. g., a group of students or users of graphical modelling
applications.
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A simpler but effective and especially objective approach to evaluation is a
choice of objective metrics affected by the layout algorithm under investigation.
These are then calculated for a large set of diagrams and related to features of
these diagrams, e. g., the number of vertices or edges. This approach has two main
advantages that made it more attractive for this thesis: First, a larger amount of test
diagrams can be evaluated in an acceptable time frame, and second, this type of
evaluation can generally be employed simpler and with no overhead due to people
management. Furthermore, the results cleanly represent the layout algorithm’s
performance in the measured fields, and does not simply show whether the users
preferred this or that diagram.

To begin this kind of evaluation, the metrics to be investigated have to be chosen.
Thus, an overview of possible metrics will be presented, followed by a reasoned
choice of the metrics to be evaluated later on. Keep in mind that an orthogonal
edge routing will be assumed since this is common for the field of application of
KLay Layered, data flow diagrams.

3.4.1 Evaluation metrics

In a drawn graph, many characteristics can be evaluated. Some of them should not
appear in a layout result at all, such as vertex overlaps or overlaps of edges and
vertices, because such overlaps make a diagram very difficult to read. Other metrics
do not necessarily have an impact on whether a diagram is virtually unreadable
or not, but can be used to make qualified statements about the performance of a
layout algorithm in a certain field. The following list contains the aesthetics criteria
found by Sugiyama et al. [STT81] and by Di Battista et al. [DETT99]:

Ź Flow direction: Describes the directions of the graph’s edges. It is desired to
have the majority of edges pointing to the same direction in order to emphasize
the data flow aspect of a diagram.

Ź Edge crossings: With a certain amount of edges, edge crossings become un-
avoidable. Nevertheless, it is desirable to have a minimal number of crossings,
since they influence a diagram’s readability in a negative way.

Ź Edge bends: Evaluates the number of bends of an edge. This corresponds to
the straightness criterion of Sugiyama et al., since non-straight edges introduce
at least two bend points in orthogonal layout.

55



3. Node Placement

(a) A graph laid out with the linear segments
node placer.

(b) The same graph laid out with the Bran-
des Köpf node placer.

Figure 3.19. A graph with different algorithms used for node placement.

Ź Edge length: The longer an edge is, the harder it is to follow while reading the
diagram. Hence, the average of the length and the maximum edge length can
be used as a metric.

Ź Drawing area: This represents the overall size of a graph, by multiplying the
expansion of a graph in vertical and horizontal direction. In general, a smaller
drawing is easier to read and to view on a screen or printing.

Ź Aspect ratio: The aspect ratio shows the relation between horizontal and vertical
expansion, with the goal of yielding a ratio common to paper or screen formats.

Ź Symmetry: Symmetry in the graph should be emphasized in the layout, a very
difficult criterion to satisfy. Symmetric drawings of a graph make it more easy
to recognize structures.

Ź Balancing: Balancing as proposed by Sugiyama et al. refers to the relation
between the highest and lowest vertices connected to a given vertex, as already
presented in Section 3.1. This is connected to symmetry, since a balanced layout
has the chance to introduce local symmetric structures.

For the evaluation of the newly implemented node placer, a subset of these
metrics has to be chosen. This is because not all criteria are equally important to
the readability of data flow diagrams and, more importantly, the node placement
phase does not influence all of them. Edge crossings for example are determined by
the vertex order computed by the crossing minimization phase right before node
placement. The node placement does not influence the number of crossings, so
they need not be included in the evaluation of a node placer.

Besides selecting the specific metrics to be evaluated it is also important to think
about which algorithm to compare the new node placer with. However, that choice
is easily made since the direct rival of the new node placer is found within the own
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(a) A Ptolemy II diagram laid out with the
linear segments node placer.

(b) The same Ptolemy II diagram laid out
with the Brandes Köpf node placer.

Figure 3.20. A Ptolemy II diagram, displayed with the KAOM editor, with different algo-
rithms used for node placement.

ranks of KLay Layered in form of the linear segments node placer. Figure 3.19 shows
example results from both node placers in a graph editor, while Figure 3.20 does
the same for a Ptolemy II2 diagram displayed in KIELER’s KAOM editor. It can be
clearly seen that the results of the new node placer have more straight edges, but
need more space, especially in vertical direction.

With these examples given, the following four criteria for an evaluation are
chosen, and a first estimate of a possible result is given, based on experiences with
and expectations of the node placers:

Ź Edge bends: As this is one of the core purposes of the new node placer, it is
expected that it will yield significantly less edge bends than the linear segments
node placer.

Ź Edge length: The usage of blocks in the new node placer leads to a slightly
increased vertical distance between vertices. On the other hand, saving edge
bends results in shorter edges. The new node placer is expected to perform
about as good as the linear segments node placer.

Ź Drawing area: As mentioned before, the new node placer needs more vertical
space. The linear segments node placer will use less space than the new node
placer.

2http://ptolemy.eecs.berkeley.edu/ptolemyII/
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Ź Aspect ratio: In the work of Schulze [Sch11], the linear segments node placer
had an average aspect ratio result of 2 to 2.5. Since the new node placer needs
more vertical space, it is expected to have a lower aspect ratio.

As another common metric in algorithm engineering, the computational per-
formance of an algorithm can be investigated. This will briefly be done, to check
whether the usage of the new node placer has any impact on the runtime of KLay

Layered. Since most of the sub-algorithms of the Brandes Köpf node placer run in
linear time, it is not expected to have any significant improvements or debasements
when using it instead of the linear segments node placer.

3.4.2 Evaluation models

With the candidates and the metrics found, a method of measurement and a set of
graphs and diagrams are the only things missing for an evaluation. Fortunately,
implementations of the given metrics in the KIELER framework were already done
in the work of Schulze mentioned above and in a work on graph analysis by
Martin Rieß [Rie10]. Graphs for the evaluation will be taken from three different
sets: a variety of randomly created, portless graphs, a variety of randomly created
port-based graphs, and a collection of Ptolemy II KAOM models taken from the
repository of demo models shipping with Ptolemy II. All sets consist of small and
medium-sized graphs to cover a wide field of layout problems. The set of Ptolemy
II models also contains some larger graphs. In the case of the randomized graph,
vertex counts from ten to fifty will be used, with the number of outgoing edges on
each vertex fixed to three, such that the vertex count implicitly determines the edge
count, efficiently ruling out a source of unwanted influence. Note that an effective
average of three outgoing edges is a rather high value. Table 3.3 shows a short
overview over the characteristics of the used graphs. Table 3.4 shows the relevant
layout options with respect to the different node placers. Most of the options are
shared and equal, to ensure a fair comparison. The algorithms in the other phases
are, of course, the same for both node placers, using the network simplex layerer in
phase two and an orthogonal edge routing in phase five.

As one can easily imagine, the random graphs do not resemble real world data
flow diagrams, so the basic idea of evaluating the node placers’ performance there
is to get a general comparison between both. The results from the evaluation with
the models from the Ptolemy II domain promise to get results closer to a real world
application.
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Table 3.3. Properties of the evaluation model sets, denoting the minimum and maximum
count of each value, followed by an average given in brackets.

Portless Port-based Ptolemy

Diagrams 170 170 300
Vertices 10–50 (29.8) 10–50 (29.8) 2–425 (30.95)
Compound vertices 1–35 (3.65)
Compound vertex children 0–58 (5.81)
Vertex degree 3–14 (6) 3–12 (9.6) 0–29 (1.99)
Edges 30–150 (89.29) 30–150 (89.29) 1–648 (37.83)
Self-loops 0–6 (0.45)

Table 3.4. The layout options chosen for the two node placers.

Linear segments Brandes Köpf

Border spacing 20 20
Edge spacing 0.5 0.5
Spacing 20 20
Balanced false

3.4.3 Evaluation results

With this, everything is ready to finally dive into evaluation. The results will now
be presented textually and graphically for each model set and node placer. A table
will show the average overall results for each metric, each node placer, and each
model set, while graphical charts will show the relationship between vertex count
and the different metrics for each diagram type. The rightmost column shows the
improvement of the new node placer in comparison to the linear segments node
placer in percent. A negative value indicates that the linear segments node placer
achieved a better result. In terms of aspect ratio, the distance to a presumably
desired aspect ratio of 1 is taken to measure the improvement.

The first results are from the evaluation of the set of portless models and
are given in Table 3.5. The results roughly conform to the expectations from
subsection 3.4.1.

In terms of edge bends, the new node placer performs about 11% better as
the linear segments node placer. While this is already a significant result, the
improvement was expected to be a little higher. The rather small improvement
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Table 3.5. The results of the evaluation of the portless model set, with averaged results
given.

Linear segments Brandes Köpf Improvement

Edge bends 255 229 11.4%
Average edge length 616.65 655.64 ´6%
Diagram area 1,380,648 1,727,429 ´20%
Aspect ratio 2.6 1.87 84%

Table 3.6. The results of the evaluation of the port-based model set, with averaged results
given.

Linear segments Brandes Köpf Improvement

Edge bends 375 293 28%
Average edge length 1,514.04 1401.31 8%
Diagram area 5,492,264 4,719,196 16.4%
Aspect ratio 1.12 0.82 ´33%

values might result from the synthetic random graphs, that are without ports and
thus pretty simple.

The average edge length results are exactly as expected: very similar with a
slight advantage for the linear segments node placer, that creates slightly shorter
edges on average. The same holds for the diagram area in which the new node
placer uses significantly more space, just as predicted.

The aspect ratio of diagrams created by the new node placer is very good, if
an aspect ratio of 1 is regarded as desired. When considering common page and
screen sizes, the Brandes Köpf node placer scores even better, since the average
result is very close to common ratios like 4:3 (1.3), 16:9 (1.7) or the A4 paper ratio
(1.4).

The second result set given in Table 3.6 represents the results from the evaluation
of the port-based model set. In this result, some surprises occur with respect to the
expectations and the results from the previous model set.

The improvement in the edge bend metric in this second result set is significantly
higher, with the Brandes Köpf node placer achieving an improvement of 28%. This
fits the improvement expectations better than the previous result and seems to
confirm the guess, that the new node placer performs better in more complex
diagrams.
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Table 3.7. The results of the evaluation of the Ptolemy II model set, with averaged results
given.

Linear segments Brandes Köpf Improvement

Edge bends 46.74 34.49 35.5%
Average edge length 245.54 262.62 ´7%
Diagram area 2,346,718 2,826,962 ´16.9%
Aspect ratio 2.43 2.13 26.5%

The first surprise occurs in the average edge length metric. While the new node
placer was expected to score slightly worse, than the linear segments node placer,
the results show a performance which is the other way round, with the Brandes
Köpf node placer performing slightly better.

An even bigger surprise unveils itself in the diagram area metrics. Here,
the Brandes Köpf node placer uses 16.4% less space than the linear segments
node placer, hinting that the new node placer is more space-effective in complex
diagrams.

A trade-off for this seems to be the aspect ratio. While the results were pleasing
with the set of portless models, the aspect ratio in port-based random diagrams
is significantly worse than the result of the linear segments node placer. The
investigation of some graphs showed that a strong presence of northern or southern
ports led to the linear segments node placer creating some kind of stair effect,
causing the diagrams to be larger in horizontal and vertical direction and closer
to a quadratic drawing. The results of the Brandes Köpf node placer are more
compact, but with a tendency to grow faster in vertical direction.

The final result set, given in Table 3.7, represents the results from the evaluation
of the model set containing Ptolemy II diagrams. The results from this model set
fit the expectations and contain no surprises. Since these diagrams are from a real
world application, it is pleasing to see the expectations matched here.

The improvement in terms of edge bends is the highest from all model sets,
with an average reduction of edge bends by 35.5%. It seems that the methods
implemented to reduce edge bends work best in a complex real world environment,
where vertex sizes are variable and hierarchy levels are present.

The average edge length and the diagram area evaluate as expected, with the
new node placer performing slightly worse in the average edge length metric and
significantly worse in terms of overall space usage.
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As in the set of portless models, the aspect ratio of the results created by the
Brandes Köpf node placer is better, but not as good as in the portless evaluation.
This most likely results from the compound vertices containing parts of the model,
because they use additional diagram space by being drawn around the graphs and
model parts. This did not occur in the set of portless models.

Although some positive surprises occurred in the evaluation of the port-based
model set, the general impression is that the expectations posed in subsection 3.4.1
were met in both a synthetic testing environment and in real world diagrams.
This gives the user of KLay Layered the choice between different focusses in his
layout tasks. When the user desires a small drawing with shorter edges, the linear
segments node placer is a good choice. If straight edges and an aspect ratio close
to common screens and paper sizes is desired, the new Brandes Köpf node placer
may be the node placer of choice.

Another aspect to be investigated was the computational performance of the
two node placers. This was done by using a tool developed by Spönemann and
Schulze [Spö09, Sch11], which uses randomly created graphs similar to those used
in the sets of portless and port-based graphs. The tool uses a K-best runtime
analysis procedure, evaluating the runtime for every graph five times and taking
the best result, to rule out cache and clock effects.

To investigate the effect of different graph structures, two sets of graphs with
different properties are evaluated. Both sets are port-based and can contain self-
loops. The first set consist of graphs with a vertex count fixed to 100 and a fixed
number of outgoing edges per vertex which lies between 0 and 6. The second set
has a variable count of outgoing edges per vertex which lies between 0 and 2, and
vertex counts that vary between 10 and 10000. Keep in mind that the graphs are
not the same for the two node placers, but share the same properties. Of course,
both runs use the same properties and algorithms, except for the node placement
phase. The reference processor is an Intel Core i5-2520M @ 2.50 GHz running 64-bit
Microsoft Windows.

The results of the performance evaluation can be seen in Figure 3.21. The plot
of the evaluation of an increasing number of outgoing edges shows that both node
placers perform equally well up to an above average edge count of 4. After that,
the linear segments node placer performs slightly better for an edge count of 5, but
starts to take significantly more time in the following. This result suggests that the
new node placer performs better if the edge count is insanely high.

The second chart shows the opposite behaviour in terms of increasing vertex
count in a graph. Up to 4000 vertices, the new node placer performs slightly better,
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Figure 3.21. The performance comparison of the two node placers. The dashed line
represents the results of the linear segments node placer, the solid line the results of the
Brandes Köpf node placer.

but the linear segments node placer starts to outperform it after that. All in all it
can be stated that the expectation of both node placers performing equally well for
graphs of a reasonable size was met.

To conclude the evaluation section and thus the node placement chapter, two
final figures will be investigated and compared between both node placers: the
relation between the diagram size, represented by the number of vertices, and the
performance in the edge length and edge bend metrics.

The results for the edge bend metric are given in Figure 3.22. The charts for the
portless and port-based model sets show smooth curves, which may be a due to
the synthetic random creation of the graphs. The charts show the expected results,
with the number of edge bends rising linearly for both node placers (with the linear
segments node placer denoted by the dashed line), but with the bend count of
results of the new node placer rising more slowly, resulting in better scores with
more vertices contained in a graph.

The plot of the results of the Ptolemy II contains more spikes and local maxima
due to the nature of the diagrams. The diagrams show very different models and
were created by humans, resulting in a more eccentric curve. Note that there are
some diagrams where the linear segments node placer produces less edge bends
than the new node placer. Nevertheless, the general expectations are met here
as well, with the Brandes Köpf node placer producing less edge bends in many
diagrams.
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(a) The edge bend metric in the set of port-
less models.
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(b) The edge bend metric in the set of port-
based models.
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(c) The edge bend metric in the set of Ptolemy II models. Note that the x
axis is scaled logarithmically, to improve the readability of the results for
small graphs.

Figure 3.22. The edge bend metric in the different model sets. The dashed line represents
the results of the linear segments node placer, the solid line the results of the Brandes Köpf
node placer.

Similar observations can be made in the charts given in Figure 3.23, that show
the performance of the node placers in terms of edge length with respect to the
number of vertices. Again, the charts for the synthetic portless and port-based
graphs show a clean curve, while the chart for the Ptolemy II model set shows a
more eccentric curve.

As was already obvious in the averaged results, the linear segments node placer
generally performs better in terms of edge length in the set of portless models.
Both curves are approximately linear, with the curve for the new node placer rising
quicker by a very small amount.

The chart for the port-based result shows where the Brandes Köpf node placer
achieved its scores for the surprising result in the edge length metrics: It performs
significantly better in larger graphs, with a vertex count of about twenty-five.
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(a) The edge length metric in the set of port-
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(b) The edge length metric in the set of port-
based models.
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(c) The edge length metric in the set of Ptolemy II models. Note that the
x-axis is scaled logarithmically, to improve the readability of the results
for small graphs.

Figure 3.23. The edge length metric in the different model sets. Again, the dashed line
represents the results of the linear segments node placer, the solid line the results of the
Brandes Köpf node placer.

Generally the edge length curve of the Brandes Köpf node placer starts slightly
higher than the curve of its competitor, but rises significantly slower, resulting in a
better performance in larger graphs.

The chart of the results of the Ptolemy II model set for the edge length metric
resemble the results of the edge bend metrics, but with the linear segments node
placer scoring better here. Again, especially in diagrams that consist of about one
hundred vertices, several diagrams exist in which the new node placer scores better
than expected. This resembles the observations in the port-based graphs, in which
the new node placer started to score better in larger diagrams.

All things considered, it can be concluded that the new node placer fulfils its
purpose. The number of edge bends can be reduced significantly in many cases,
resulting in cleaner diagrams, as could be seen in several examples in this chapter.
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3. Node Placement

Furthermore, the trade-off to be made in terms of the increased diagram size, is
not necessarily bad in all cases: as seen for portless and real world diagrams, the
aspect ratio was improved by the new node placer, resulting in diagrams that are
more suitable for display or printing.
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Chapter 4

Label Placement

The second main chapter of this thesis deals with the problem of label placement
in automatic layout and has a similar structure as the node placement chapter.
The first section will define the problem of label placement, starting with very
general placement tasks and refining them to tasks connected to graph drawing
and modelling. The second section presents approaches and ideas to solve the
placement problems given in the first section. The third chapter will describe the
implementation of some of the presented approaches in the context of KIELER and
KLay Layered. The last section will evaluate the label placements produced by the
implementation.

4.1 Problem Statement

Labels are used to enhance a drawing, a graphic, or a model, where the information
can not be expressed by the drawing alone. They have the task to clarify relations,
semantics, and ideas. In many cases, the reasonable placement of the annotations
is essential to the fulfilment of this task. For example, if labels are used to describe
data which is propagated via a connection in a data flow diagram, the label has to
be placed close to the connection, without being placed close to other connections
or objects, so that the meaning of the label and its association with diagram objects
is clear. An example for an annotated data flow diagram is given in Figure 4.1.

The problem of label placement itself is much older than computer science, since
information exchange via annotated drawings can be found early in the history of
mankind. A prominent example is cartography, represented in Figure 4.2 by an
excerpt of the famous Carta Marina, a map of northern Europe, created around A.D.
1539 by Olaus Magnus. The author uses labels placed close to graphical objects to
express their meaning. For example, the label KIL next to the drawing of a tower in
the middle of the map expresses that the tower represents the city Kil, commonly
known as the state capital of Schleswig-Holstein by its modern name, Kiel. As can
be seen with the label HOLSATHIA, proximity alone may not suffice to clarify the
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Figure 4.1. A simple data flow diagram, with the propagated values and component names
annotated through labels.

Figure 4.2. An excerpt of the Carta Marina, showing parts of today’s northern Germany
and a few Danish isles.

meaning since it is placed close to several villages and lakes. By drawing the label
in a larger font, the author expresses that HOLSATHIA is the name of the whole
duchy containing the mentioned villages.

As could be seen with this example, the basic requirements of cartography
and label placement in the graphical modelling domain are very similar. It can be
expressed by two basic structures, the labels themselves and the graphical features
to which the labels belong. The term feature covers all the objects that will be of
relevance in both domains, cities, villages, and rivers or rather vertices, edges, and
ports.
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To develop this into a clearly defined problem one can solve, requirements of a
good label placement have to be found. From the examples above, two essential
requirements for any reasonable label placement can be derived:

Ź A label must not overlap another label. Label overlaps would decrease the
readability of both labels dramatically and thus has to be avoided whenever
possible.

Ź Every label has to be unambiguously associated with a graphical feature. While
the first criterion is obvious and easy to check up on, this criterion is rather
vague and may be difficult to evaluate. It can be influenced for example by
proximity or distinguishing aspects like font, size, or color.

One can easily think of additional criteria, but the two given above are essential
for the quality of any label placement result. In the field of cartography, Eduard
Imhof and Pinhas Yoeli studied this subject thoroughly, and identified the given
two criteria as essential as well [Yoe72, Imh75]. Since label placement in graphs is
closely related to cartography, this can also be assumed for graph label placement.

This leads to a general definition of the basic label placement problem:

Definition 4.1. Given a finite set F of graphical features f , and a set Λ of possible
label positions, a label placement has to be found which is represented by a total
function λ : F Ñ Λ, meaning that λ is defined for every element of F.

In this definition, the criteria of good label placement are not taken into account
yet. This is because often there is no clear distinction between a criterion’s being
satisfied or not. This leads to a function which tries to capture the extent to which
a label placement satisfies the criteria: the cost function.

Definition 4.2. The function COSTλ : Λ Ñ N determines the cost of the placement
of a label at a given position by taking the quality criteria into account.

The cost function dynamically changes with the already chosen candidate posi-
tons because overlaps may be introduced or avoided. It offers different possibilities
for the evaluation of a placement. Breaking one of the given rules can be punished
with higher costs, according to the importance of the criteria to the user. An overlap
will always get a high penalty, but ambiguousness may be punished differently,
e. g., if different fonts are used as an additional measure beside proximity.

With this way of evaluating a possible solution to the label placement problem,
it can now be stated as an optimization problem:
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(a) Map showing a part of eastern Schleswig-
Holstein.1

(b) Graph representing a simplified version
of the given map.

Figure 4.3. Equivalent structures in cartography and graph drawing.

Definition 4.3. For given set of features F and label positions Λ, a placement λ as
defined in Definition 4.1 has to be found which minimizes the following function:

∑
fPF

COSTλ(λ( f ))

With this, a general definition of a labeling problem is found. This problem def-
inition, without further extensions, is primarily applied in the field of cartography.
Nevertheless, there also exist approaches in the field of graph drawing that use this
general definition [KT03].

As one can easily imagine, the general problem definition can be extended
for better specifying the label placement task and narrowing down the set of
possible positions, resulting in a more manageable problem. Again, the closeness
to cartography can help to identify basic structures that are shared by maps and
graphs. As shown in Figure 4.3, one can express a map as a graph, by allowing
a certain level of simplification. With this, the relationship between cartography
labels and graph labels gets obvious, e. g., by mapping cities to vertices and roads
to edges.

Vertex or node label placement and edge label placement are the two parts
of the general label placement of a graph. Furthermore, the graph model was
extended by ports in Section 2.1 that may also be labeled. There is no obvious

1http://maps.google.com
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(a) An area for placing labels associated to a
point.

(b) Candidate positions for placing labels
associated to a point.

Figure 4.4. Possible reductions of the label position set in point feature label placement.

direct equivalent to ports in cartography. Nevertheless, ports are covered by the
general definition of the label placement problem given above, because they can be
regarded as graphical features placed very close to a vertex and an edge.

In the following, the labeling of these three basic structures will be investigated
by giving a problem statement for each of them individually.

4.1.1 Node Label Placement

In cartography, a very common case is the labeling of single points on the map,
when cities are simplified by being represented by a single point instead of their
actual extend. Because of that, one sub problem of the general feature label
placement problem is the point feature label placement problem [CMS95]. In there,
a continuous region or a discrete number of positions around the point to be
labeled are chosen as candidate positions for each point to restrict the candidate
position space. An example for candidate areas and positions for a point feature
label placement is given in Figure 4.4.

The introduction of candidate areas and positions extends the definition of the
feature label placement problem from Definition 4.1 as follows:

Definition 4.4. For a given finite set P Ď F of point features, a subset Λp Ď Λ is
defined for every p P P. A label placement is then represented by the functions
λp : P Ñ Λp.
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Figure 4.5. The placement areas of a port, a vertex, and an edge.

As seen before, vertices can be regarded as the counterparts of cities. Hence,
the idea of point feature label placement can be applied to node label placement
as well. A difference to the common idea of point feature label placement is that
vertices may differ in size and can be very large. Additionally, a vertex may also be
a rectangle with an odd aspect ratio. However, this does not prevent the basic idea
of point feature label placement from being applied; it only changes the possible
placement area or candidate positions.

Of course, the optimization problem as defined in Definition 4.3 can be applied
to node label placement as well, by choosing a cost function suitable for the
requirements posed to the label placement, most likely basing on the two essential
rules of label placement given above. It is also possible to create a ranking of the
candidate positions: in cartography, for example, the top right position is usually
considered most desirable [Imh75]. When thinking about an approach later on, it
might be helpful to keep in mind that point feature label placement, and with that
node label placement, is NP-hard [FW91].

Another labeling problem which is closely related to point feature label place-
ment is port label placement.

4.1.2 Port Label Placement

As cities, ports are usually drawn as point-like objects as well, e. g., small squares
or triangles. Thus, one could easily infer that port label placement could also be
solved using point feature label placement. The challenge, however, comes from
the necessary closeness of ports to other features like vertices, edges, and other
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ports. The areas where a vertex, its port, and a connected edge influence each other
in terms of label placement is shown in Figure 4.5.

As one can clearly see, even this small example already poses a challenge to a
pleasing placement of labels for all these features. When introducing more ports
and edges on the given vertex, label overlaps will be unavoidable if the position
and size of the features is fixed.

With ports and vertices, two of the three basic structures of a port-based graph
covered, the third, edge label placement, which was already hinted at, will be
investigated.

4.1.3 Edge Label Placement

At first sight, edges are the first graph structure which cannot simply be abstracted
as a point and can instead be compared to roads and rivers in the cartography
context. The major difference in most cases is the length and path of an edge in
comparison to, e. g., a road. Especially in maps of a larger scale, long and curvy
roads are the common case. In graph drawing, however, it is preferable to have
short and straight edges, as was already discussed in Chapter 3. Of course, this
results in a smaller placement area for edge labels. This can already be seen in
Figure 4.3, even though the graph is drawn rather generously with regard to space
usage.

Furthermore, roads usually only have one label. This is different in graph
drawing; many modelling environments use a distinction of edge labels into three
types:

Ź Head Label: On a directed edge, this label is placed near the target vertex.

Ź Center Label: This label is associated with the edge itself and is placed at its
center.

Ź Tail Label: On a directed edge, this label is placed near the source vertex.

When the edge is undirected, the distinction between head and tail labels
disappears. In the following, they will thus be called end labels.

With this, every edge has three different placement areas, one for each of the
given label types. An example of an edge with its placement areas is given in
Figure 4.6. Unfortunately, these areas have to be kept clear even if there is no label
of the respective type present, to avoid any kind of ambiguity, such as the one seen
in Figure 4.7.
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HeadCenterTail

Figure 4.6. The placement areas of the different edge label types.

Something

Figure 4.7. An edge label placement where a distinction between tail and center label is
not possible.

Again, it is possible to find an edge label placement by using a point feature
label placement approach. A point which lies on the edge, preferably in the center
of the presented placement areas, can be chosen for each of the label types. But
with this, the labels of each point on the edge will be placed individually.

Especially in the case of edges, additional constraints may be applied to the
placement, in an attempt to increase readability. A major decision when placing
more than one label on the same edge is the choice of a side of the edge to place the
label to. Switching sides on the same edge may lead to obfuscation and confusion.
To get a grip on this, the Side Aware Edge Label Placement (SAELP) problem will
be defined and discussed in the following.

4.1.4 Introducing Side Aware Edge Label Placement

When labels carry information or even semantics, e. g., in automaton graphs, it is
essential to be able to unambiguously associate the right label with the right edge.
When having several edges connected to one vertex, the decision on which side of
the edge the label should be placed plays a key role. Figure 4.8 shows examples of
label placements that lead to ambiguity, resulting in a nearly unusable diagram.

This shows that carefully choosing the placement side of an edge can be very
important for a readable diagram. Furthermore, it is very favourable to have all
labels associated with an edge placed on the same side of the edge.

With this in mind, the rules for a good label placement can be extended to the
following:
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HeadCenterTail

(a) Labels which are placed between two
edges, making it unclear which label belongs
to which edge.

LongTailLongCenterLongHead

(b) The long labels result in unreadable an-
notations in this example.

Center
Tail

Tail

Head

HeadCenter

(c) The labels of the upper edge are not on
the same side, a possible source of confusion.

Figure 4.8. Ambiguous edge label placements due to poor choice of placement side.

Ź A label may not overlap another label.

Ź The association between labels and edges must be unambiguous.

Ź All labels associated with an edge have to be on the same side of the edge. This
may be above and below, or left and right, depending on the orientation of the
edge. Conflicts may arise when more than one edge is connected to a vertex.

An optimization problem for Side Aware Edge Label Placement (SAELP) can
now be defined by choosing a cost function depending on the rules given above.
It will then be used to find a label placement which minimizes the term given in
Definition 4.3.

Before thinking about possible approaches to this problem, the complexity of
the SAELP will be analyzed.

4.1.5 On the complexity of SAELP

As seen before, the general problem of label placement has been investigated most
thoroughly in the context of cartography. The general point feature label placement
has been found to be an NP-complete problem [FW91]. Although point feature
label placement is applicable to many cases, placement problems for simpler cases
in the graph context have also been proven to be NP-complete. Three groups
investigated node label placement, discovering that despite several simplifications
the problem is NP-complete [FW91, MS91, KH88].
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Regarding the edge label placement problem, Kakoulis and Tollis made two
discoveries while investigating its complexity [KT01]. Their first discovery was that
there is no easy transformation from edge label placement to the node or point
feature label placement problem. The second discovery then was that edge label
placement is also NP-complete. To prove that, Kakoulis and Tollis defined several
simplifications of the problem and proved each of them to be NP-complete. The
general approach was to reduce a first simplification to the 3-SAT problem, as
posed by Craig Tovey [Tov84].

In this context, the presented SAELP problem can also be regarded as a simplifi-
cation of the general edge label placement. It will be proved here, by reduction on
one of the simplified problems by Kakoulis and Tollis, that the SAELP problem is
NP-complete as well.

The first step to take before starting a proof is to pose the SAELP problem as
a decision problem rather than an optimization problem, since NP-completeness
can only be shown in terms of decision problems. For doing so, the three rules
of SAELP (no overlaps, unambiguousness and side awareness) are used in a more
strict cost function:

Definition 4.5. Given a label assignment λ and a graphical feature f P F, the cost
function is defined as follows:

COSTλ(λ( f )) =
{

0 if placement satisfies rules
1 else

With this, the SAELP decision problem is represented by the following definition:

Definition 4.6. Find a label assignment λ : F Ñ Λ which satisfies the given rules
by having this term resulting in 0:

∑
fPF

COSTλ(λ( f ))

Additionally to this basic decisive criterion, several constraints to the problem
are posed, to narrow down the possible placement positions and adjust the problem
to the requirements of the label placement goals of this thesis.

Ź Every edge has six discrete, non-overlapping positions at which the labels can
be placed. Thus, every edge label type has two candidate positions, as can be
seen in Figure 4.9.

Ź Orthogonal edge routing will be used. This means, labels can be placed alongside
their edges without interfering with, e. g., odd other edges.
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Tail Center Head

Tail Center Head
Figure 4.9. Six discrete positions for the three labels of an edge.

Ź Labels are of the same size and require one third of the length of an edge,
resulting in enough space for all three label types on an edge.

The approaches to the SAELP problem presented later on fit these constraints
even though they might seem overly restrictive at first.

Theorem 4.7. The SAELP problem, with the given constraints, is NP-complete.

Proof. The first step will show that SAELP P NP, and the second step will then show
that SAELP is NP-hard.

(i) To show that SAELP is in NP, it has to be shown that a possible solution can
be checked for its correctness in polynomial time.

To do so, an arbitrary label assignment is chosen for each edge label to be
placed. After that, every label has to be checked for overlaps with other labels
or ambiguity with respect to other labels or other graphical features. Here,
ambiguity can be checked by requiring the corresponding label of a feature
to be the closest label, and by requiring the feature to be the feature closest
to the label. Then, every label has to be compared with other labels of the
edge, to check whether the labels are on the same side.

Obviously, the first and second requirement can be checked in polynomial
time, the third requirement in linear time.

(ii) To show that SAELP is NP-hard, is has to be shown that SAELP can be reduced
to any problem that is in NP, and that any problem in NP can be reduced to
SAELP, each in polynomial time. This can be done by showing these reduc-
tions for any particular NP-hard problem since this reduction relationship is
transitive.

As mentioned before, Kakoulis and Tollis showed that the general edge
label placement problem is NP-hard. In their proof, they introduced several
simplifications of the general problem, who themselves proved to be NP-hard
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as well. The problem relevant to this proof is the Discrete Admissible Edge
Label Placement (DAELP) problem which assumes discrete, non-overlapping
positions for a single label on an edge. This positions happen to be chosen as
"above the edge" or "below the edge".

The NP-hardness of SAELP can now be shown by reducing SAELP to DAELP.
This can be done by merging the three labels of a SAELP into a single one.
These tasks can clearly be performed in polynomial time.

It has to be shown now that transformed solutions to the problems are still
valid:

Theorem 4.8. Given an instance of the SAELP problem, the transformation given
above constructs an instance of the DAELP problem with zero cost if and only if the
SAELP has zero cost.

Proof. "ñ": Assume an instance of the SAELP problem with zero cost. It
follows that the labels of the graph were assigned without violating the side
awareness requirement and that the two basic rules of non-overlapping labels
and unambiguous placement were adhered to. With this, the three label
positions for each edge given by SAELP can merged to yield a zero cost DAELP.

"ð": Assume an instance of the DAELP problem with zero cost. This means
that the decision on which side of the edge the label has to be placed for
a zero cost assignment has been made. Since the requirements of SAELP

constrained edge labels to have a length of one third of the edge and DAELP

reserves the whole side of an edge clear, the single DAELP label can now be
split into the three SAELP labels. Since the DAELP was already free of overlaps
and unambiguous, and since the created SAELP positions are on the same
side, a zero cost SAELP is yielded.

This shows that SAELP is in NP and that it can be reduced to an NP-hard
problem; thus, SAELP is NP-complete.

This concludes the statement of label placement problems covered by this thesis.
The following section will now present ideas and approaches to label placement.
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(a) Moderately long labels make it hard to
distinguish which label belongs to which
edge.

(b) The same state machine, but the layout
left enough space for the labels.

Figure 4.10. Readability can be improved by explicitly reserving space for labels.

4.2 Approach

Unlike node placement, there will not be a single approach or algorithm to all the
label placement problems given above (node label placement, port label placement,
and edge label placement). While this would be possible by transforming all of
these into point feature label placement problems, specialized algorithms will
yield better results for the different label placement problems. The general and
essential idea of candidate positions however is applied as well. Additionally, the
approaches presented here will also use the advantages of a fully accessible and
changeable layout process, to improve the quality of difficult label placements by
explicitly reserving space for labels.

4.2.1 Spicing up layout with label placement

As seen before, the core problem of label placement is finding enough space
to place all labels while fulfilling at least the two basic rules of an overlap-free
and unambiguous placement. In some cases, for example when a single label is
exceptionally long, it may even be impossible to find a placement which satisfies
the placement rules without modifying the layout of the graph. Especially when
labels carry semantic meaning, e. g., transition labels in a state chart or automaton,
the labels tend to become rather large. An unfortunate placement may render the
diagram unreadable and thus unusable, as the example of Figure 4.10a shows.
There, the placement algorithm did not have much choice, since it was not given
any influence on the positions of vertices or on the routing of edges.
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4. Label Placement

So, when implementing a label placement algorithm in a post-processing ap-
proach after the general layout of a graph is determined, the possibilities are
limited. However, when integrating label placement into an existing layout algo-
rithm such as KLay Layered, a larger variety of solutions is possible. Remember
that the structure of KLay Layered supports intermediate processors between the
main phases, giving the opportunity to alter the graph or the layout result in a way
which allows to create exactly the space that is needed for the labels. With this, the
example of Figure 4.10a may result in an altered, more readable layout as shown in
Figure 4.10b.

This approach of altering the layout in different ways to grant each label
the space it needs will be applied to the label placement problems presented
in Section 4.1. For some problems, multiple approaches will be presented and
discussed. Depending on the concrete use case, one approach might be better than
others, or might not be applicable at all.

4.2.2 Node Labels and Node Margins

The problem of node label placement is the graph label placement problem which
has the closest relation to a pure and general point feature label placement. Can-
didate positions are chosen around the vertex or point and the position with the
highest score is picked for the final placement, taking overlaps with other labels
into account.

In the graphs laid out by KLay Layered, vertices are not regarded as points, but
also have a size. This has no further influence on the concept of candidate positions,
but will play a role when thinking about placing the label inside of the vertex.
Whether a label can be placed inside of a vertex depends on two conditions. The
first condition is that a vertex must not contain anything that could overlap with
its label. As seen in Figure 4.11, this can be the case when a vertex uses an image
to display its meaning, or when a vertex in a nested graph contains another graph.

Nevertheless, in many cases it is possible and desirable to place labels inside of
a vertex, e. g., in the context of state machines. To do this, the second constraint has
to be kept in mind: is the layout algorithm allowed to change the size of a vertex,
and if so, under which conditions? If the vertex size is fixed, only labels that are
smaller than the vertex itself can be placed inside of it. Other requirements to the
size may be that the aspect ratio of the vertex has to stay the same, that a certain
size must not be exceeded, or that port positions are constrained. The latter will
also be important when thinking about port and edge labels.
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Label
(a) Label placed inside of a vertex, overwrit-
ing its graphic content.

Label

(b) Label placed inside of a compound ver-
tex, overwriting the nested graph.

Figure 4.11. Inside-node label placement is not applicable to all types of vertices.

To avoid checking and dealing with these constraints on a placement inside of a
vertex, one can choose to place labels outside of a vertex. In this case, an approach
similar to the point feature label placement approach has to be chosen, resulting
in choosing candidate positions around the vertex and decide on one for the label
placement.

One important difference to the normal point feature placement is that the
placement algorithm is not forced to work with fixed vertex positions, and thus
without any influence on the amount of space reserved for a label. It rather is able,
due to the structure of KLay Layered, to decide on a candidate position early on in
the layout process and reserve the space for the label during the layout process. To
do that, an intermediate processor adds a certain margin to the outline of a vertex
before node placement takes place, to reserve the space needed to place the label at
the chosen candidate position. An example for candidate positions and resulting
margins can be seen in Figure 4.12.

With this, a label placement satisfying the rules of good placement can only be
prevented by further elements that are part of the vertex, namely vertex content
or connected ports and edges. In the worst case, all four sides of the vertex are
occupied by edges and the interior is used by, for example, a nested graph. In
this case, it depends on the constraints whether a satisfying label placement is yet
possible. When the vertex size is allowed to be altered, the vertex can be drawn
large enough to place a label well away from a blocking edge on either side, as can
be seen in Figure 4.13. If the constrains allow no change in size, a less favourable
candidate position has to be picked, due to a lack of alternatives.
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Node
(a) Candidate position and margins if the
label is placed below the vertex.

Node

(b) Candidate position and margins if the
label is placed on the right side of the vertex.

Figure 4.12. Examples for node label placements and the resulting margins.

Node

Node

Node

Node

Figure 4.13. Possible placements when all sides of the vertex are blocked by edges.
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Port

Port Port

Port

Figure 4.14. Stretching the edge to introduce enough space for the port label.

Port Port

Figure 4.15. Reserving edge label candidate positions for port labels.

4.2.3 Port Labels

When placing port labels, the difficulty comes from the unfortunate location of
ports. Since ports are connection points for edges on a vertex, they necessarily lie
close to their vertex and at least one edge. As seen before, the placement area for
port labels lies well inside the placement areas for edges and labels, leaving almost
no placement area belonging to the port label alone.

Because of that, a successful port label placement algorithm has to negotiate
with the placement algorithms of the other label types to make sure that it does not
introduce overlaps or ambiguousness. Depending on the situation in the respective
graph, several approaches to port label placement are possible.

Again, an approach that works in most situations is to simply create the space
required to place the port label. This can be done by increasing the margin of its
vertex by the amount needed for the port label, effectively creating enough space
for port and edge labels, as can be seen in Figure 4.14. Nevertheless, this approach
should be regarded as a fall-back solution to be used only if none of the following
approaches can be applied, because several disadvantages exist: if only one port
label or edge label is present, it may not be clear which if the two kinds of labels it
is. Additionally, this approach will end up creating very long edges if each port
has a label and all three types of edge labels are present.

A similar approach is to place the port label close to the port on one side
of the edge, and placing the edge labels a little away on the other side of the
edge, as shown in Figure 4.15. While this solution saves a little more space, other
disadvantages still exist. It may introduce ambiguousness when only one label is
present and one is not sure whether it belongs to the port or to the edge. When
vertices have more than one port on a given side, there might also not be enough
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Port Port

Figure 4.16. Placing port labels inside of vertices.

Port Port

Figure 4.17. Port label placement inside of the port itself.

space for this approach, if the vertex cannot be resized to accommodate the labels.
A different approach is similar to one already seen in the context of node labels,

and is limited by similar constraints. In this approach, the space inside of a vertex
is used to place the port labels. With that, the placement space available for edge
labels is not influenced and a major source of ambiguity is ruled out. An example
for this is shown in Figure 4.16. Although this approach is preferable, in many
cases it can not be applied. Apart from the reasons already mentioned in the similar
node label placement approach (content, size restrictions), the size problems are
more severe in this case. If the vertex is not to be resized, it is very unlikely that
enough space is available for all port and node labels.

A final approach requires the ports themselves to be resizeable and filled with a
color on which the labels in their normal font and color can be read. Additionally,
ports would be limited to rectangular shapes. Then, the ports can be resized such
that every port can contain its own label, as shown in Figure 4.17. This approach
ensures the placement to be unambiguous and rules out any influence to the other
placement types. Unfortunately, the resized ports start to look odd when a certain
size is reached. Therefore, this approach should only be used with small port
labels.

For the application of a port label placement approach, only one or two of the
ideas presented here should be chosen, to prevent confusion among users. For
the general case, the placement inside the vertex should be the method of choice
because it results in the most clear placements when vertices are resizeable. The
edge stretching approach can be used as a fall-back solution if the constraints of the
graph prevent an inside placement. It is also possible to leave the choice between
these two approaches to the user.
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Tail Center Head

Tail Center Head

Figure 4.18. End label space is kept clear via vertex margins.

4.2.4 Edge Labels

The final label type left to think about is edge labels. Here, three different edge label
types that were presented in subsection 4.1.3 have to be considered. Furthermore,
a feasible approach to the SAELP problem is in the scope of this thesis as well. Since
it is NP-complete, several heuristics will be presented instead of giving an optimal
solution with respect to a given cost function.

Again, the focus of the approaches will lie on creating placement space instead
of being content with the space left after the graph was laid out. Because of that,
the approach for the end labels of an edge will rely on a concept already presented.
To ensure that there is enough space for each end label of an edge, the margins
of the respective vertices are increased by the size of the labels, resulting in a free
area around the vertex and edge into which the label can be comfortably placed.
An example for such a margin is given in Figure 4.18. A problem could still occur
if there is more than one edge connected to a vertex, because end labels might
overlap in an unwise placement. A solution to this problem will be included in the
SAELP approaches.

As for center labels, this approach is not applicable. This is because an edge
might be routed around other vertices and edges, resulting in a simple horizontal
margin being useless. Of course, it is impossible to increase the vertex margins in
horizontal and vertical dimension until the label has enough space: with this, large
chunks of white space would be introduced around every vertex and edge with a
center label.

Instead, a method already used quite extensively in layered layout is applied:
dummy vertices. Eiglsperger et al. proposed a similar approach to label placement
for the orthogonal layout of UML class diagrams [EKS03].

The basic idea of this approach is to split every edge which has an associated
center label by inserting a newly created dummy vertex that represents the label.
The size of the dummy depends on the size of the label, to make sure that enough
space is reserved for the label. Figure 4.19 shows the introduction of dummy
vertices for a center label. Note that the dimensions of the dummy vertex depend
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Tail Center Head

Tail Center Head

Figure 4.19. A dummy vertex is introduced to reserve space for a center label with enough
space to be able to choose a placement side later on.

Center

(a) Label dummy vertex position after layer-
ing.

Center

(b) Label dummy vertex position after swap.

Figure 4.20. Swapping label dummy vertices to centermost position after layering.

on whether a side for the label was already found. If so, the dummy can occupy
exactly that space below or above the edge. If not, the dummy has to extend to
both sides to reserve enough space for both possible placements.

A problem with this approach in a layered layout algorithm is the choice of at
which point in the algorithm the dummy vertices should be inserted. Clearly it
should take place before the layering, otherwise a layerless dummy or a complicated
adjustment of the given layering is the result. Unfortunately, when having long
edges, this usually results in having the label dummy vertex at the beginning or
the end of a long edge, which is not desirable for a center label. This can be solved
by letting the layering algorithm do its work and trying to swap the label dummy
with the centermost long edge dummy afterwards, as can be seen in Figure 4.20.
Unfortunately, it can still happen that the center label is placed a little away from
the center of the edge if the dummy count of an edge is even. Then, the swap takes
place with one of the two center dummies.

With this, end and center labels are guaranteed to have enough space for a
placement. The last choice to be made now is the placement side, addressed by the
SAELP problem presented in subsection 4.1.4. One can think of several heuristics
that make a more or less educated decision on the placement side. Examples for
the three approaches are given in Figure 4.21.

A first and simple heuristic is found by deciding on a static side choice for all
labels. Because of the edges being routed orthogonally, the edge segment on which
the label will be placed can always be drawn horizontally and long enough, such
that a label has enough space to fit close to the edge. In the case of northern or
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(a) Labels are always placed above edges. (b) Labels are placed above edges with re-
spect to direction.

(c) Labels are placed depending on edge pat-
terns in a greedily manner.

Figure 4.21. Examples for the three SAELP approaches.

southern ports, the labels have to be placed above or below each other, or the vertex
has to be resized to fit the labels. Furthermore, when every label is placed on the
same side, e. g., above or below the edge, there will be no overlaps, again, because
all of the placement spaces are horizontal, except for the case where there is not
enough space between the edges and the vertex is not resizeable.

Another approach connects label placement with the semantics of a diagram by
placing the labels on a certain side depending on an edge’s direction. For example,
the labels can be placed above an edge if the edge points from left to right and
below it if the edge points from right to left. Contrary to the first approach, this
approach does not exclude label overlaps that are not related to edge spacing issues.
As shown in Figure 4.22, if edges with different directions meet on the same vertex
side, overlaps can occur. To avoid that, ports of a vertex would have to be sorted by
incoming and outgoing edges, which might or might not be allowed, depending
on the diagram to be laid out.

The final approach presented in this thesis works in a greedy manner. Several
possibilities of edges connecting to a vertex are distinguished that dictate a certain
side choice, e. g., a vertex with two connected edges. The preferable placement
would be above the edge for the upper edge and below the edge for the lower
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LabelLabel

Figure 4.22. Overlap in a direction-based
label side choice.

Label

Label

Label

Label

Label

LabelLabel

Label

Figure 4.23. Overlaps in a greedy approach
that does not take other placement choices
into account.

edge. If this was applied to all vertices without further constraints, overlaps as
shown in Figure 4.23 could occur. Because of that, the placement algorithm marks
all connected vertices according to the choice of sides if they were not marked
beforehand. Further vertices that are connected to a marked vertex must place
the labels on the same side to avoid overlaps. If a new marker differs from an
already present one, a conflict might occur, as can be seen in Figure 4.25. In this
case, a compromise has to be made by placing the respective end labels on the side
indicated by their associated vertex. This approach is greedy because the graph
is traversed vertex by vertex and the side markers are set according to the earlier
vertex’s structure.

An example for that is given in Figure 4.24. The algorithm starts with N0,
recognizing the pattern of two outgoing edges. The connected vertices N1 and
N2 are checked for markers, but none are found since they have not been visited
before. The labels of the two edges are then marked for UP or DOWN placement,
N1 is marked with UP, and N2 is marked with DOWN. The algorithm continues
with N1. Since there is no special pattern, and N3 is not marked, it defaults to UP,
marking the labels of the edge and N3 with UP. Continuing with N2, the algorithm
finds the marking UP on the connected vertex N3. Thus, the labels of the edge are
marked with UP as well.
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N0

N1

N2

N3

Up

Down

Up

Up

Figure 4.24. An example graph showing the general process of the greedy heuristic.

Down
Down

Down

Up

Down

N0

N1

N2

N3

N4

Figure 4.25. The vertex N3 was marked for a label placement below the edges. This
conflicts with the desired placement above the edge by vertex N1.
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A possible improvement of this approach may be an algorithm that considers
several placement choices and selects the placement with the smallest number of
conflicts.

This concludes the proposal of approaches to the different graph label place-
ment problems. The following section will deal with implementations of selected
approaches in the context of KLay Layered.

4.3 Implementation

As described in subsection 2.4.1, KLay Layered consists of phases and intermediate
processors. As one can easily see, label placement is not part of the main phases.
When thinking about integrating label placement with this algorithm, a choice has
to be made between introducing a new phase or using intermediate processors for
the label placement. This choice depends greatly on the type of label placement
algorithm. If it is a post-processing, the introduction of a sixth phase in KLay Layered
for the label placement would be acceptable. However, the approaches presented
in this thesis instead need to influence the layout at several points. For that reason,
the label placement approaches have to be implemented as intermediate processors
that are carefully integrated into KLay Layered at the right places. Therefore, the
following section will present the intermediate processors used to implement the
given approaches, along with information about when in the algorithm they are
executed and the necessary pre- and postconditions that apply to each processor.

4.3.1 Node size and margins

When labels are chosen to be placed inside of a vertex, the vertex has to be resized
to fit the label. In the KIELER tool, the diagram editors perform this rescaling
automatically when entering a new label. Nevertheless, it would be preferable for
the layout algorithm to be able to perform the required resizing when necessary.
Additionally, in the case of an outside placement with all four sides blocked by
edges, the vertex might be resized to fit the label as well. Unfortunately, the current
structure of the KLay Layered algorithm does not allow intermediate processors to
resize vertices. A task for future work would be to change that. To be prepared for
that case, the intermediate processor for this resizing will already be included with
the NodeLabelSizeAdjuster, given in Table 4.1.

For the placement of labels outside of a vertex, the approach using margins to
reserve space for the labels is applied. As a part of his diploma thesis, Schulze
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Table 4.1. The NodeLabelSizeAdjuster intermediate processor.

Preconditions None.
Postconditions Vertices are resized, such that labels fit inside or beside the vertices.

The labels store information about the reserved space,
to avoid having to calculate this again later on.

Slot Before phase 1 (cycle removal).
Dependencies None.

Table 4.2. The NodeMarginCalculator intermediate processor [Sch11].

Preconditions The graph is layered.
Port positions are fixed.

Postconditions Node margins are set to reserve space for labels.
The labels store information about the reserved space,
to avoid having to calculate this again later on.

Slot Before phase 4 (node placement).
Dependencies PortPositionProcessor.

created a NodeMarginCalculator, as shown in Table 4.2, which can be used for this
[Sch11].

After these two intermediate processors, a final processor will be needed for
the actual placement of vertex labels once that is made part of the layout algorithm.
The NodeLabelPlacer, given in Table 4.3, depends on information about the space
reserved by the previous intermediate processors.

4.3.2 Port label space

As noted before, port labels share their possible placement space with vertex and
edge labels. The two approaches for port label placement that are implemented
here are to place port labels inside of their vertices and to place them outside,
moving the possible end labels further towards the middle of the edge.

The intermediate processors are responsible for these two placement areas were
already presented with the NodeLabelSizeAdjuster and the NodeMarginCalculator.
Thus, the necessary measures for reserving port label space are included in these
two processors, rather than creating new ones.

The processors have to be modified to add the space needed for placing the
port labels, be it inside or outside of a vertex, to the already adjusted vertex size
or node margins. Furthermore, the actual placement of the port labels has to be
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Table 4.3. The NodeLabelPlacer intermediate processor.

Preconditions Vertex sizes or margins reserve space for labels.
Labels are annotated to hint at the chosen placement.

Postconditions Labels are placed inside of the reserved space.
Slot After phase 5 (edge routing).
Dependencies None.

included in the processors for the actual placement of node or edge labels after
phase 5. In the case of an inside placement, the label can be placed beside the port
inside of the vertex. On northern or southern ports, enough horizontal space has
to be reserved. In the case of an outside placement, the port label has to be placed
along with the other edge labels, to avoid having port labels and edge labels on
different sides of an edge

4.3.3 Simplifying label placement

With the placement structure for node and port labels in place, the last missing label
type are edge labels. According to the approach presented before, the placement is
simplified by introducing a discrete set of candidate positions. For every edge label,
the placement decides between two positions, above or below the edge, denoted as
UP and DOWN. This translates to left and right in the rare case of vertical edges.
To keep the side decision algorithms as clean as possible, intermediate processors
will be introduced for end and center labels that calculate the concrete position for
a label depending on the given side choice.

4.3.4 SAELP heuristics

The placement algorithms need information about which side of the edge the
labels should be placed on. The side is decided by a heuristic that approximates a
solution to the SAELP optimization problem. Three possible heuristics were given
in subsection 4.2.4. The implementation of these heuristics is included in the
LabelSideSelector intermediate processor that is described by Table 4.4.

The processor implements the strategy pattern from the famous design patterns
by Gamma et al. [GHJV95]. Depending on the choice of the user, offered to him as
a layout option as presented in subsection 2.4.1, a heuristic is picked from the set
of heuristics implemented in the processor. The choice is between ALWAYS_UP,
ALWAYS_DOWN, DIRECTION_UP, DIRECTION_DOWN, and SMART.
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Table 4.4. The LabelSideSelector intermediate processor.

Preconditions The graph is properly layered.
Postconditions A choice of placement side is made for every edge.

The choice is documented in every concerned label.
Slot Before phase 3 (crossing minimization).
Dependencies None.

The implementation of the first four strategies is straightforward. For the
completely static side selection, every label is simply annotated with UP or DOWN
respectively. In the direction dependant strategy, the direction of the edges is
regarded before making a choice. For example, if the user chose DIRECTION_UP,
labels on edges from left to right, or in-layer edges, are marked with UP, whilst
labels on edges from right to left are marked DOWN.

If the choice was SMART, the greedy approach tries to find patterns of desirable
side choices, or defaults to UP if no pattern matches, and marks the edges respec-
tively. If the target vertex of an outgoing edge is already marked with a placement
side, that side is taken for the outgoing edges connected to current vertex as well.
In the current implementation, the only pattern is to place labels on a vertex with
two outgoing edges above and below the upper and lower edge.

4.3.5 End label placement

For end label placement, space has again to be reserved by an earlier processor,
namely the NodeMarginCalculator. It is modified to take the space into account that
is necessary for placing the end labels. The side of the edge the labels should be
placed on was decided by the LabelSideSelector. With this space reserved, the
EndLabelProcessor can translate the chosen side and the reserved space into a final
placement for the end label. It has to make sure that the label placement does
not interfere with a possible port label that could have been placed outside of the
vertex, alongside the edge. The EndLabelProcessor can be seen in Table 4.5.

In case of end labels on vertices with more than one vertical edge connected to
the same vertex side, the already placed labels’ heights have to be used as an offset
to prevent label overlaps. One could also prevent overlaps between labels and
edges by modifying the NodeLabelSizeAdjuster such that every vertex is resized
until all edge labels can be placed between the edges without touching another
edge. However, that would result in very large vertices even with small labels since
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Table 4.5. The EndLabelProcessor intermediate processor.

Preconditions Vertex sizes and margins reserve space for labels.
Labels are annotated with the chosen placement.
Space needed for port labels is known.

Postconditions Labels are placed inside of the reserved space.
Slot After phase 5 (edge routing).
Dependencies None.

Table 4.6. The LabelDummyInserter intermediate processor.

Preconditions The vertices have not been assigned to layers.
Postconditions Center labels are represented by dummy vertices.
Slot Before phase 2 (layer assignment).
Dependencies None.

the size of all labels and some additional spacing will add up to the final vertex
size.

4.3.6 Center label processing

This leaves center labels as the last missing label type. As seen in the approach
to center label placement given in subsection 4.2.4, the space for center labels is
reserved via dummy vertices. Thus, the task of a first intermediate processor is to
introduce dummy vertices for every center label. The LabelDummyInserter, given
in Table 4.6, splits every edge annotated with a center label into two edges with a
dummy vertex of the size of the label in between them. This takes place even before
the layering, to avoid complex modifications of an already calculated layering.

After the graph is layered, the LongEdgeSplitter, which was already a part of
KLay Layered, transforms the layered graph into a properly layered graph (edges
do not span more than one layer, see Chapter 2 for more details) by introducing
dummy vertices to split long edges. Now, the center label dummies have to be
swapped with a centermost long edge dummy, to have the label as close to the
middle of the edge as possible in the final placement. This task is performed by
the LabelDummySwitcher given in Table 4.7.

An additional benefit of the LabelDummySwitcher is that the center label dummy
vertex can now be resized according to the choice of side given by the LabelSide-

Selector since the height of the label dummy only influences the layout after
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Table 4.7. The LabelDummySwitcher intermediate processor.

Preconditions The graph is properly layered.
Center label dummy vertices have been inserted.

Postconditions Center label dummies are the centermost dummies in a long edge.
Slot Before phase 3 (crossing reduction).
Dependencies LongEdgeSplitter.

LabelSideSelector.

Table 4.8. The LabelDummyRemover intermediate processor.

Preconditions Center label dummy vertices have been inserted.
Postconditions Center labels are placed at the position of the dummy vertices.

The edges split by a center dummy are joined again.
Slot After phase 5 (edge routing).
Dependencies None.

phase 4. This simplifies the task of the final processor for center labels, the
LabelDummyRemover, as given in Table 4.8. This intermediate processor removes the
label dummy vertices and places the actual label accordingly. The label is placed at
the exact position of the label dummy that was decided on in the node placement
and edge routing phase.

This concludes the implementation section, since all selected label placement
mechanisms were included in KLay Layered via intermediate processors. The follow-
ing section will investigate results of the new placement methods and reason about
possible advantages, disadvantages, or problems that remain to be investigated.

4.4 Evaluation

Compared to the evaluation methods of node placement presented in Section 3.4,
the methods of evaluation for the label placement results will be quite different.
This is because there is no actual candidate for a fair and meaningful comparison
via aesthetics criteria: no approach with similar conditions, a label placement
completely included in the layout algorithm, is known to the author. Comparison
with a post-processing approach, e. g., an approach by Kakoulis and Tollis [KT03],
is not suitable, since the challenges of both placement methods are utterly different.
When using aesthetics criteria based on the basic label placement rules, no overlaps,
ambiguity and a close proximity to the labeled elements, no fair comparison is
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Figure 4.26. Edge label placement in a portless graph.

possible. The approach by Kakoulis and Tollis struggles with the given drawing
to place the labels as well as possible while the approach presented in this thesis
simply alters the graph drawing such that enough space is available for each label.
Furthermore, even if a comparison of the two algorithms were meaningful there
are practical problems: since the algorithm by Kakoulis and Tollis is patented it
cannot simply be implemented in the context of KLay Layered.

Therefore, the evaluation in this chapter will rely on examples of the new
placement method, to point out advantages or disadvantages of this method or
and to discover problems that might still exist. Note that the resizing of vertices to
fit the respective labels in between edges or inside of the vertex was done manually
for these examples, since KLay Layered does not allow the resizing of vertices by
the layout algorithm at the time of writing. As seen in the previous section, the
algorithms for this resizing are already present and ready to be included as soon
as KLay Layered allows the resizing.

4.4.1 Example results

The first example, given in Figure 4.26, shows the result of edge label placement in
a portless graph with the greedy heuristic with side awareness activated. One can
see that the side awareness is complied for all edges and that, of course, no overlaps
exist. A possible problem can be seen with the vertices N0 and N6. The labels of a
connected edge forced a resizing of the vertices N0 and N6, making them twice
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(a) Ambiguity introduced by too few labels
and too little space between the three edges.

(b) A possible solution is keeping edges well
away from each other.

Figure 4.27. Problems of ambiguity on vertices with more than two edges on the same
side.

the size of some other vertices in the graph. This effect will get even stronger with
more edges connected on the same side, but is an unavoidable trade-off if space for
the labels is created.

A case of ambiguity would occur with the label "head14" if the side awareness
was not ensured. Without side awareness, a reader could not decide to which edge
the label belongs. With side awareness the reader can check the other labels of the
edge and compare them to the side of the questionable label.

Nevertheless, a general problem can occur if not at least two labels of an edge
are present. As can also be seen in Figure 4.27a, ambiguity is introduced if only a
few edges are labeled. In case of labels of outer edges this could be solved by using
a different heuristic which forces this label to stay on the side of the edge that does
not introduce obfuscation. This is not possible for inner edges. There, two possible
solutions exist: the usage of a static choice of sides makes the user know that the
labels of an edge are e. g., always above it. The other solution requires more space:
the vertex is resized such that there is enough space between the edges for a clean
placement, as seen in Figure 4.27b.

Larger examples of a port-based graph with port label placement inside and
outside of a vertex are shown in Figure 4.28. The overall placement of labels in
the examples is acceptable, however, the possible disadvantage of reserving space
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(a) Port labels are placed outside of vertices.

(b) Port labels are placed inside of vertices.

Figure 4.28. The same, port-based graph with the two different port label placements.
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Table 4.9. Properties of the evaluation model sets, denoting the minimum and maximum
count of each value, followed by an average given in brackets.

Portless Port-based

Diagrams 100 100
Vertices 5–100 (52.5) 5–100 (52.5)
Vertex degree 3–14 (3.04) 3–12 (2.97)
Edges 30–150 (79.8) 30–150 (77.76)

for the labels can be seen here as well: the vertices that contain the rather short
port label "port" are resized to twice the length of vertices without port labels. This
would be even worse with longer port labels.

4.4.2 Evaluation of space usage

As seen in the examples given above, the major trade-off of reserving space for
label placement is, not surprisingly, a notable increase in the overall size of the
graph. Because of that, a final evaluation will be done to quantify the effect of
additional space usage when using the presented label placement approaches. In
this evaluation, the focus will lie on two of the metrics introduced in subsection 3.4.1:
the drawing area of the graph and the aspect ratio. Again, the analysis framework
implemented by Martin Rieß can be used to analyse the results [Rie10].

For performing this analysis, a set of test graphs will be created, similar to the
evaluation as performed in Section 3.4. As there exist only few labels in the Ptolemy
II Model set, which are vertex labels for the most part, it is not suitable for this
evaluation. However, sets of random graphs can be used again for this evaluation.
As before, a set of portless and a set of port-based diagrams will be used. Edges
will be fully labeled, with labels "Head", "Center", and "Tail" at the respective
positions. Both sets will consist of graphs with a vertex count between five and
one hundred, with one or two outgoing edges per vertex, chosen randomly. The
port-based graphs may also have northern or southern ports. The characteristics of
the two graph sets can be seen in Table 4.9. The relevant layout options can be seen
in Table 4.10. The evaluation takes place by laying out both sets of graphs, once
with label placement activated and once without label placement.

In terms of drawing area, it is expected to have a significant rise in the used
area, due to the introduced dummy vertices for the center labels and the larger
node margins for the end labels.
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Table 4.10. The layout options chosen for the two evaluation layouts.

Option Value

Border spacing 20
Edge spacing 0.5
Spacing 20
Label Side smart / none
Node Placement Brandes Köpf
Edge Routing Orthogonal
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(a) Diagram area usage in the set of portless
models.
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(b) Diagram area usage in the set of port-
based models.

Figure 4.29. The diagram area metric in the different model sets. The dashed line represents
the results without label placement, the solid line the results with label placement. The
unit of the y axis values is square pixels.

The aspect ratio is also expected to rise because the text of labels, and with
that the reserved space, always grows from left to right. With that, the graph size
will experience a significant growth in the horizontal direction. However, since
the Brandes Köpf node placer, presented in Chapter 3, will be used for evaluation,
the larger horizontal spread from the labels might balance the exceptionally large
vertical spread created by the node placer in port-based diagrams.

The results from the evaluation of the overall diagram area are given in Fig-
ure 4.29. The expectation of a significant increase of the diagram area is met in both
model sets, with the diagram size of models from the port-based set being larger in
general. Regardless, the results show that reserving space for labels takes a great
amount of space. In diagrams with a vertex count of twenty, the space usage is
doubled, while the diagrams with one hundred vertices take are three times as
large.
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(a) Aspect ratio in the set of portless models.
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(b) Aspect ratio in the set of port-based mod-
els.

Figure 4.30. Aspect ratio with and without label placement in the different model sets. The
dashed line represents the results without label placement, the solid line the results with
label placement.

The results of the aspect ratio metric evaluation are shown in Figure 4.30. Again,
the results coincide with the expectations given above. It is flamboyant that the
aspect ratio is especially high when label placement is applied to small portless
graphs. This is simply explained, though, because the horizontal spread increases
strongly with every labeled edge, while the vertical spread only rises when the
layers grow, which happens in larger graphs or in port-based graphs that introduce
more dummy vertices because of northern, southern, or inverted ports. In the long
run, a layout without labels has a smaller aspect ratio than a layout with label
placement.

A different behaviour can be found for port-based graphs. There, the vertical
growth introduced by the Brandes Köpf node placer causes the aspect ratio to
get very small in graphs with twenty vertices or more. As one considers either
an aspect ratio of 1 (for square drawing) or an aspect ratio between 1.3 and 1.7
(for common paper or screen formats) desirable, the additional horizontal growth
introduced by label placement actually balances the aspect ratio, resulting in an
overall more pleasing diagram format.

This concludes the evaluation of the new label placement and thus the second
main chapter of this thesis. The evaluation showed that the new label placement ap-
proaches can create feasible placement results, but still lack optimization, especially
with respect to space usage.
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Chapter 5

Conclusion

Now, after two topics in the domain of automatic layout or, more specifically, in
a layered layout approach were thoroughly investigated, it is the right moment
to take a step back and look at the work that was presented in this thesis. In this
conclusion, it will be investigated from several points of view. For a start, the
content of this thesis will be summed up, and the goals posed in Chapter 1 will be
investigated in terms of whether they were achieved or not. After that, a look at
the loose ends left by this thesis to be picked up by promising young scientists will
be taken, presenting tasks and ideas for future work.

5.1 Summary

In this thesis, the existing layered layout algorithm KLay Layered was extended by
several new features, to improve the layout results especially with respect to edge
bends and to extend the algorithm by giving it the ability to deal with diagram
annotations and labels.

In the first part, a new algorithm for the node placement phase of KLay Lay-
ered, the determination of vertical coordinates for the vertices, was presented,
implemented, and improved. An approach by Ulrik Brandes and Boris Köpf was
presented and explained, by extending the algorithms and explanations from the
paper by more detailed explanations and algorithms that were omitted in the paper,
probably because of space limitations.

The presented approach was extended by several new features of which some
are essential for applying this approach in a real world environment. The algorithm
is now able to deal with vertices of any size, a very important feature in real
world diagram editors. Additionally, the arrangement of vertices that have the
same y coordinate due to being inside of the same block was modified, such that
every edge inside a block is drawn straightly. With this, the algorithm creates
feasible results for port-based graphs as well. Furthermore, several mechanisms
for compacting the node placement were introduced, like giving edges less space
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than vertices or moving blocks as close to each other as possible. A best effort
mechanism for drawing certain edges straightly was introduced as well.

The approach was improved by allowing it to also choose a node placement
from the layout candidates calculated during the algorithm as a result, and not
only the final, balanced result.

Complex structures that could be laid out by KLay Layered using the old node
placement algorithm were also integrated into this new approach, to keep the
abilities of the layout algorithm. For example, support for northern and southern
ports, in-layer edges, and hierarchical vertices was included.

The evaluation showed that the main goal, the reduction of edge bends, was
achieved by the new node placer. However, a trade-off had to be made in terms
of diagram area, because the new straight edges require more drawing space,
especially in the vertical direction.

While investigating label placement in graphs or diagrams, a new variant of
the label placement problem was discovered with the Side Aware Edge Label
Placement proven to be NP-complete.

The general approach to the presented label placement problems in this thesis
was different to the post-processing approaches often applied to label placement.
Here, the label placement was fully integrated into the layout algorithm by employ-
ing several mechanisms that explicitly reserve space for the respective labels.

Because these mechanisms have to be applied throughout the whole KLay

Layered algorithm, the intermediate processor architecture of KLay Layered was
leveraged to cleanly integrate the required algorithms.

The example results of this new integrated label placement were promising,
showing a readable label placement for the different kinds of labels. However, the
evaluation of the space usage of this approach showed that the space requirements
rose significantly when additional space was saved for the labels. This shows that
the work on integrated label placement is not finished with this thesis.

5.2 Future Work

It is a commonly accepted fact that scientific work is never truly finished. This is
also the case for the topics of this thesis, so the following section will present ideas
for future work on the two topics.
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5.2.1 Node Placement

The evaluation of the new node placer showed that the space usage of the result
is significantly higher than when using linear segments node placer. While this is
unavoidable to a certain degree since straight edges require more space than edges
bent around vertices, it is quite possible that methods exist that could be applied to
get a more compact result. For example, the spacing around northern or southern
ports is quite generous at the moment, to make sure that edge decorators such as
arrowheads have enough space. This could be optimized, e. g., by checking for the
presence of decorators.

The possibility of drawing a given set of edges straightly is already present as
a best effort mechanism. It could be better to have a mechanism which enforces
the straight drawing of selected edges. To achieve that, the algorithm would have
to be restructured to be able to form blocks for such edges outside of the normal
block creation routine. Nevertheless, each of these possible approaches will have
its limits since, for example, two outgoing edges of a vertex that are connected
to different target vertices in the next layer will always result in one of the edges
being bent. Otherwise, the target vertices would overlap.

5.2.2 Label Placement

As with node placement, the general disadvantage of the new label placement
approach discovered in the evaluation are the space requirements. As the approach
of integrated label placement in the layered layout approach is new, there is no
work on optimizing the used space. Especially the new dummy vertices for center
labels require a lot of horizontal space. This might be reduced by several measures.

An approach to reduce the space usage of long center labels might be label
management. There, one area of research is to investigate possibilities of intro-
ducing line breaks into labels to use otherwise wasted vertical space instead of
horizontal space. Another, more general solution would be to reduce the spacing
of label dummy vertices, similar to the edge spacing factor presented in the node
placement chapter.

As for the SAELP problem, different heuristics besides the already presented
ones may be investigated. For example, the transformation into an already existing
optimization problem might be investigated, as the problem might translate well
into linear equations or a graph coloring problem.
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5. Conclusion

Last but not least, a restructuring of KLay Layered has to take place, to allow the
algorithms to change the size of vertices. Once this is done, the new mechanism
has to be integrated into the already present intermediate processors that resize
vertices to fit the respective labels.
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