|
@@ -0,0 +1,1143 @@
|
|
|
+import datetime
|
|
|
+import faulthandler
|
|
|
+import functools
|
|
|
+import gc
|
|
|
+import inspect
|
|
|
+import json
|
|
|
+import math
|
|
|
+import os
|
|
|
+import random
|
|
|
+import re
|
|
|
+import sqlite3
|
|
|
+import sys
|
|
|
+import threading
|
|
|
+import time
|
|
|
+from bisect import bisect_left
|
|
|
+from enum import Enum
|
|
|
+from itertools import chain, combinations
|
|
|
+from math import log, isnan, nan, floor, log10, gcd
|
|
|
+from numbers import Number
|
|
|
+from shutil import copyfile
|
|
|
+from threading import RLock
|
|
|
+from types import FunctionType
|
|
|
+from typing import Union, Tuple, List, Optional, Dict, Any, Type
|
|
|
+# noinspection PyUnresolvedReferences
|
|
|
+from unittest import TestCase, mock
|
|
|
+
|
|
|
+import cachetools
|
|
|
+import hanging_threads
|
|
|
+import matplotlib.cm
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+import numpy
|
|
|
+import numpy as np
|
|
|
+import pandas
|
|
|
+import scipy.optimize
|
|
|
+import scipy.stats
|
|
|
+import tabulate
|
|
|
+from scipy.ndimage import zoom
|
|
|
+
|
|
|
+X = Y = Z = float
|
|
|
+
|
|
|
+
|
|
|
+class KnownIssue(Exception):
|
|
|
+ """
|
|
|
+ This means the code is not working and should not be used but still too valuable to be deleted
|
|
|
+ """
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+def powerset(iterable):
|
|
|
+ """powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"""
|
|
|
+ s = list(iterable)
|
|
|
+ return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
|
|
|
+
|
|
|
+
|
|
|
+def plot_with_conf(x, y_mean, y_conf, alpha=0.5, **kwargs):
|
|
|
+ ax = kwargs.pop('ax', plt.gca())
|
|
|
+ base_line, = ax.plot(x, y_mean, **kwargs)
|
|
|
+ y_mean = np.array(y_mean)
|
|
|
+ y_conf = np.array(y_conf)
|
|
|
+ lb = y_mean - y_conf
|
|
|
+ ub = y_mean + y_conf
|
|
|
+
|
|
|
+ ax.fill_between(x, lb, ub, facecolor=base_line.get_color(), alpha=alpha)
|
|
|
+
|
|
|
+
|
|
|
+def choice(sequence, probabilities):
|
|
|
+ # if sum(probabilities) != 1:
|
|
|
+ # raise AssertionError('Probabilities must sum to 1')
|
|
|
+ r = random.random()
|
|
|
+ for idx, c in enumerate(sequence):
|
|
|
+ r -= probabilities[idx]
|
|
|
+ if r < 0:
|
|
|
+ return c
|
|
|
+ raise AssertionError('Probabilities must sum to 1')
|
|
|
+
|
|
|
+
|
|
|
+def print_attributes(obj, include_methods=False, ignore=None):
|
|
|
+ if ignore is None:
|
|
|
+ ignore = []
|
|
|
+ for attr in dir(obj):
|
|
|
+ if attr in ignore:
|
|
|
+ continue
|
|
|
+ if attr.startswith('_'):
|
|
|
+ continue
|
|
|
+ if not include_methods and callable(obj.__getattr__(attr)):
|
|
|
+ continue
|
|
|
+ print(attr, ':', obj.__getattr__(attr).__class__.__name__, ':', obj.__getattr__(attr))
|
|
|
+
|
|
|
+
|
|
|
+def attr_dir(obj, include_methods=False, ignore=None):
|
|
|
+ if ignore is None:
|
|
|
+ ignore = []
|
|
|
+ return {attr: obj.__getattr__(attr)
|
|
|
+ for attr in dir(obj)
|
|
|
+ if not attr.startswith('_') and (
|
|
|
+ include_methods or not callable(obj.__getattr__(attr))) and attr not in ignore}
|
|
|
+
|
|
|
+
|
|
|
+def zoom_to_shape(a: np.ndarray, shape: Tuple, mode: str = 'smooth', verbose=1):
|
|
|
+ from keras import backend
|
|
|
+ a = np.array(a, dtype=backend.floatx()) # also does a copy
|
|
|
+ shape_dim = len(a.shape)
|
|
|
+ if len(a.shape) != len(shape):
|
|
|
+ raise ValueError('The shapes must have the same dimension but were len({0}) = {1} (original) '
|
|
|
+ 'and len({2}) = {3} desired.'.format(a.shape, len(a.shape), shape, len(shape)))
|
|
|
+ if len(shape) == 0:
|
|
|
+ return a
|
|
|
+ zoom_factors = tuple(shape[idx] / a.shape[idx] for idx in range(shape_dim))
|
|
|
+
|
|
|
+ def _current_index_in_old_array():
|
|
|
+ return tuple(slice(0, length) if axis != current_axis else slice(current_pixel_index, current_pixel_index + 1)
|
|
|
+ for axis, length in enumerate(a.shape))
|
|
|
+
|
|
|
+ def _current_pixel_shape():
|
|
|
+ return tuple(length if axis != current_axis else 1
|
|
|
+ for axis, length in enumerate(a.shape))
|
|
|
+
|
|
|
+ def _current_result_index():
|
|
|
+ return tuple(
|
|
|
+ slice(0, length) if axis != current_axis else slice(pixel_index_in_result, pixel_index_in_result + 1)
|
|
|
+ for axis, length in enumerate(a.shape))
|
|
|
+
|
|
|
+ def _current_result_shape():
|
|
|
+ return tuple(orig_length if axis != current_axis else shape[axis]
|
|
|
+ for axis, orig_length in enumerate(a.shape))
|
|
|
+
|
|
|
+ if mode == 'constant':
|
|
|
+ result = zoom(a, zoom_factors)
|
|
|
+ assert result.shape == shape
|
|
|
+ return result
|
|
|
+ elif mode == 'smooth':
|
|
|
+ result = a
|
|
|
+ for current_axis, zoom_factor in sorted(enumerate(zoom_factors), key=lambda x: x[1]):
|
|
|
+ result = np.zeros(_current_result_shape(), dtype=backend.floatx())
|
|
|
+ # current_length = a.shape[current_axis]
|
|
|
+ desired_length = shape[current_axis]
|
|
|
+ current_pixel_index = 0
|
|
|
+ current_pixel_part = 0 # how much of the current pixel is already read
|
|
|
+ for pixel_index_in_result in range(desired_length):
|
|
|
+ pixels_remaining = 1 / zoom_factor
|
|
|
+ pixel_sum = np.zeros(_current_pixel_shape())
|
|
|
+ while pixels_remaining + current_pixel_part > 1:
|
|
|
+ pixel_sum += (1 - current_pixel_part) * a[_current_index_in_old_array()]
|
|
|
+ current_pixel_index += 1
|
|
|
+ pixels_remaining -= (1 - current_pixel_part)
|
|
|
+ current_pixel_part = 0
|
|
|
+
|
|
|
+ # the remaining pixel_part
|
|
|
+ try:
|
|
|
+ pixel_sum += pixels_remaining * a[_current_index_in_old_array()]
|
|
|
+ except (IndexError, ValueError):
|
|
|
+ if verbose:
|
|
|
+ print('WARNING: Skipping {0} pixels because of numerical imprecision.'.format(pixels_remaining))
|
|
|
+ else:
|
|
|
+ current_pixel_part += pixels_remaining
|
|
|
+
|
|
|
+ # insert to result
|
|
|
+ pixel_sum *= zoom_factor
|
|
|
+
|
|
|
+ result[_current_result_index()] = pixel_sum
|
|
|
+ a = result
|
|
|
+
|
|
|
+ assert result.shape == shape
|
|
|
+ return result
|
|
|
+ else:
|
|
|
+ return NotImplementedError('Mode not available.')
|
|
|
+
|
|
|
+
|
|
|
+def profile_wall_time_instead_if_profiling():
|
|
|
+ try:
|
|
|
+ import yappi
|
|
|
+ except ModuleNotFoundError:
|
|
|
+ return
|
|
|
+ currently_profiling = len(yappi.get_func_stats())
|
|
|
+ if currently_profiling and yappi.get_clock_type() != 'wall':
|
|
|
+ yappi.stop()
|
|
|
+ print('Profiling wall time instead of cpu time.')
|
|
|
+ yappi.clear_stats()
|
|
|
+ yappi.set_clock_type("wall")
|
|
|
+ yappi.start()
|
|
|
+
|
|
|
+
|
|
|
+def dummy_computation(*_args, **_kwargs):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+def backup_file(filename):
|
|
|
+ copyfile(filename, backup_file_path(filename))
|
|
|
+
|
|
|
+
|
|
|
+def backup_file_path(filename):
|
|
|
+ return filename + time.strftime("%Y%m%d") + '.bak'
|
|
|
+
|
|
|
+
|
|
|
+# noinspection SpellCheckingInspection
|
|
|
+def my_tabulate(data, tablefmt='pipe', **params):
|
|
|
+ if data == [] and 'headers' in params:
|
|
|
+ data = [(None for _ in params['headers'])]
|
|
|
+ tabulate.MIN_PADDING = 0
|
|
|
+ return tabulate.tabulate(data, tablefmt=tablefmt, **params)
|
|
|
+
|
|
|
+
|
|
|
+def ce_loss(y_true, y_predicted):
|
|
|
+ return -(y_true * log(y_predicted) + (1 - y_true) * log(1 - y_predicted))
|
|
|
+
|
|
|
+
|
|
|
+class DontSaveResultsError(Exception):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+def multinomial(n, bins):
|
|
|
+ if bins == 0:
|
|
|
+ if n > 0:
|
|
|
+ raise ValueError('Cannot distribute to 0 bins.')
|
|
|
+ return []
|
|
|
+ remaining = n
|
|
|
+ results = []
|
|
|
+ for i in range(bins - 1):
|
|
|
+ from numpy.random.mtrand import binomial
|
|
|
+ x = binomial(remaining, 1 / (bins - i))
|
|
|
+ results.append(x)
|
|
|
+ remaining -= x
|
|
|
+
|
|
|
+ results.append(remaining)
|
|
|
+ return results
|
|
|
+
|
|
|
+
|
|
|
+class UnknownTypeError(Exception):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+# def shape_analysis(xs):
|
|
|
+# composed_dtypes = [list, tuple, np.ndarray, dict, set]
|
|
|
+# base_dtypes = [str, int, float, type, object] # TODO add class and superclass of xs first element
|
|
|
+# all_dtypes = composed_dtypes + base_dtypes
|
|
|
+# if isinstance(xs, np.ndarray):
|
|
|
+# outer_brackets = ('[', ']')
|
|
|
+# shape = xs.shape
|
|
|
+# dtype = xs.dtype
|
|
|
+# elif isinstance(xs, tuple):
|
|
|
+# outer_brackets = ('(', ')')
|
|
|
+# shape = len(xs)
|
|
|
+# dtype = [t for t in all_dtypes if all(isinstance(x, t) for x in xs)][0]
|
|
|
+# elif isinstance(xs, list):
|
|
|
+# outer_brackets = ('[', ']')
|
|
|
+# shape = len(xs)
|
|
|
+# dtype = [t for t in all_dtypes if all(isinstance(x, t) for x in xs)][0]
|
|
|
+# elif isinstance(xs, dict) or isinstance(xs, set):
|
|
|
+# outer_brackets = ('{', '}')
|
|
|
+# shape = len(xs)
|
|
|
+# dtype = [t for t in all_dtypes if all(isinstance(x, t) for x in xs)][0]
|
|
|
+# elif any(isinstance(xs, t) for t in base_dtypes):
|
|
|
+# for t in base_dtypes:
|
|
|
+# if isinstance(xs, t):
|
|
|
+# return str(t.__name__)
|
|
|
+# raise AssertionError('This should be unreachable.')
|
|
|
+# else:
|
|
|
+# raise UnknownTypeError('Unknown type:' + type(xs).__name__)
|
|
|
+#
|
|
|
+# if shape and shape != '?':
|
|
|
+# return outer_brackets[0] + str(xs.shape) + ' * ' + str(dtype) + outer_brackets[1]
|
|
|
+# else:
|
|
|
+# return outer_brackets[0] + outer_brackets[1]
|
|
|
+
|
|
|
+
|
|
|
+def beta_conf_interval_mle(data, conf=0.95):
|
|
|
+ if len(data) <= 1:
|
|
|
+ return 0, 1 # overestimates the interval
|
|
|
+ if any(d < 0 or d > 1 or isnan(d) for d in data):
|
|
|
+ return nan, nan
|
|
|
+ if numpy.var(data) == 0:
|
|
|
+ return numpy.mean(data), numpy.mean(data)
|
|
|
+ epsilon = 1e-3
|
|
|
+ # adjusted_data = data.copy()
|
|
|
+ # for idx in range(len(adjusted_data)):
|
|
|
+ # adjusted_data[idx] *= (1 - 2 * epsilon)
|
|
|
+ # adjusted_data[idx] += epsilon
|
|
|
+ alpha, beta, _, _ = scipy.stats.beta.fit(data, floc=-epsilon, fscale=1 + 2 * epsilon)
|
|
|
+
|
|
|
+ lower, upper = scipy.stats.beta.interval(alpha=conf, a=alpha, b=beta)
|
|
|
+ if lower < 0:
|
|
|
+ lower = 0
|
|
|
+ if upper < 0:
|
|
|
+ upper = 0
|
|
|
+ if lower > 1:
|
|
|
+ lower = 1
|
|
|
+ if upper > 1:
|
|
|
+ upper = 1
|
|
|
+ return lower, upper
|
|
|
+
|
|
|
+
|
|
|
+def gamma_conf_interval_mle(data, conf=0.95) -> Tuple[float, float]:
|
|
|
+ if len(data) == 0:
|
|
|
+ return nan, nan
|
|
|
+ if len(data) == 1:
|
|
|
+ return nan, nan
|
|
|
+ if any(d < 0 or isnan(d) for d in data):
|
|
|
+ return nan, nan
|
|
|
+ if numpy.var(data) == 0:
|
|
|
+ return numpy.mean(data).item(), 0
|
|
|
+ alpha, _, scale = scipy.stats.gamma.fit(data, floc=0)
|
|
|
+
|
|
|
+ lower, upper = scipy.stats.gamma.interval(alpha=conf, a=alpha, scale=scale)
|
|
|
+ if lower < 0:
|
|
|
+ lower = 0
|
|
|
+ if upper < 0:
|
|
|
+ upper = 0
|
|
|
+ return lower, upper
|
|
|
+
|
|
|
+
|
|
|
+beta_quantile_cache = cachetools.LRUCache(maxsize=10)
|
|
|
+
|
|
|
+
|
|
|
+@cachetools.cached(cache=beta_quantile_cache, key=lambda x1, p1, x2, p2, guess: (x1, x2, p1, p2))
|
|
|
+def beta_parameters_quantiles(x1, p1, x2, p2, guess=(3, 3)):
|
|
|
+ "Find parameters for a beta random variable X; so; that; P(X > x1) = p1 and P(X > x2) = p2.; "
|
|
|
+
|
|
|
+ def square(x):
|
|
|
+ return x * x
|
|
|
+
|
|
|
+ def objective(v):
|
|
|
+ (a, b) = v
|
|
|
+ temp = square(scipy.stats.beta.cdf(x1, a, b) - p1)
|
|
|
+ temp += square(scipy.stats.beta.cdf(x2, a, b) - p2)
|
|
|
+ return temp
|
|
|
+
|
|
|
+ xopt = scipy.optimize.fmin(objective, guess, disp=False)
|
|
|
+ return (xopt[0], xopt[1])
|
|
|
+
|
|
|
+
|
|
|
+def beta_conf_interval_quantile(data, conf=0.95, quantiles=(0.25, 0.75)):
|
|
|
+ if len(data) <= 1:
|
|
|
+ return 0, 1 # overestimates the interval
|
|
|
+ mu = numpy.mean(data)
|
|
|
+ v = numpy.var(data)
|
|
|
+ data = numpy.array(data)
|
|
|
+ if v == 0:
|
|
|
+ return mu, mu
|
|
|
+ lower = numpy.quantile(data, quantiles[0])
|
|
|
+ upper = numpy.quantile(data, quantiles[1])
|
|
|
+
|
|
|
+ alpha_guess = mu ** 2 * ((1 - mu) / v - 1 / mu)
|
|
|
+ beta_guess = alpha_guess * (1 / mu - 1)
|
|
|
+
|
|
|
+ alpha, beta = beta_parameters_quantiles(lower, quantiles[0], upper, quantiles[1], (alpha_guess, beta_guess))
|
|
|
+ return scipy.stats.beta.interval(alpha=conf, a=alpha, b=beta)
|
|
|
+
|
|
|
+
|
|
|
+def beta_stats_quantile(data, quantiles=(0.25, 0.75)):
|
|
|
+ if len(data) <= 1:
|
|
|
+ return 0, 1 # overestimates the interval
|
|
|
+ data = numpy.array(data)
|
|
|
+ mu = numpy.mean(data)
|
|
|
+ v = numpy.var(data)
|
|
|
+ if v == 0:
|
|
|
+ return mu, mu
|
|
|
+ lower = numpy.quantile(data, quantiles[0])
|
|
|
+ upper = numpy.quantile(data, quantiles[1])
|
|
|
+
|
|
|
+ alpha_guess = mu ** 2 * ((1 - mu) / v - 1 / mu)
|
|
|
+ beta_guess = alpha_guess * (1 / mu - 1)
|
|
|
+
|
|
|
+ alpha, beta = beta_parameters_quantiles(lower, quantiles[0], upper, quantiles[1], (alpha_guess, beta_guess))
|
|
|
+ return scipy.stats.beta.stats(a=alpha, b=beta)
|
|
|
+
|
|
|
+
|
|
|
+def beta_stats_mle(data):
|
|
|
+ if len(data) == 0:
|
|
|
+ return nan, nan
|
|
|
+ if len(data) == 1:
|
|
|
+ return nan, nan
|
|
|
+ if any(d < 0 or d > 1 or isnan(d) for d in data):
|
|
|
+ return nan, nan
|
|
|
+ if numpy.var(data) == 0:
|
|
|
+ return numpy.mean(data), 0
|
|
|
+ epsilon = 1e-4
|
|
|
+ # adjusted_data = data.copy()
|
|
|
+ # for idx in range(len(adjusted_data)):
|
|
|
+ # adjusted_data[idx] *= (1 - 2 * epsilon)
|
|
|
+ # adjusted_data[idx] += epsilon
|
|
|
+ alpha, beta, _, _ = scipy.stats.beta.fit(data, floc=-epsilon, fscale=1 + 2 * epsilon)
|
|
|
+
|
|
|
+ return scipy.stats.beta.stats(a=alpha, b=beta)
|
|
|
+
|
|
|
+
|
|
|
+def gamma_stats_mle(data):
|
|
|
+ if len(data) == 0:
|
|
|
+ return nan, nan
|
|
|
+ if len(data) == 1:
|
|
|
+ return nan, nan
|
|
|
+ if any(d < 0 or isnan(d) for d in data):
|
|
|
+ return nan, nan
|
|
|
+ if numpy.var(data) == 0:
|
|
|
+ return numpy.mean(data), 0
|
|
|
+ alpha, _, scale = scipy.stats.gamma.fit(data, floc=0)
|
|
|
+
|
|
|
+ return scipy.stats.gamma.stats(a=alpha, scale=scale)
|
|
|
+
|
|
|
+
|
|
|
+beta_stats = beta_stats_quantile
|
|
|
+beta_conf_interval = beta_conf_interval_quantile
|
|
|
+gamma_stats = gamma_stats_mle
|
|
|
+gamma_conf_interval = gamma_conf_interval_mle
|
|
|
+
|
|
|
+
|
|
|
+def split_df_list(df, target_column):
|
|
|
+ """
|
|
|
+ df = data frame to split,
|
|
|
+ target_column = the column containing the values to split
|
|
|
+ separator = the symbol used to perform the split
|
|
|
+ returns: a data frame with each entry for the target column separated, with each element moved into a new row.
|
|
|
+ The values in the other columns are duplicated across the newly divided rows.
|
|
|
+
|
|
|
+ SOURCE: https://gist.github.com/jlln/338b4b0b55bd6984f883
|
|
|
+ """
|
|
|
+
|
|
|
+ def split_list_to_rows(row, row_accumulator):
|
|
|
+ split_row = json.loads(row[target_column])
|
|
|
+ for s in split_row:
|
|
|
+ new_row = row.to_dict()
|
|
|
+ new_row[target_column] = s
|
|
|
+ row_accumulator.append(new_row)
|
|
|
+
|
|
|
+ new_rows = []
|
|
|
+ df.apply(split_list_to_rows, axis=1, args=(new_rows,))
|
|
|
+ new_df = pandas.DataFrame(new_rows)
|
|
|
+ return new_df
|
|
|
+
|
|
|
+
|
|
|
+try:
|
|
|
+ import winsound as win_sound
|
|
|
+
|
|
|
+
|
|
|
+ def beep(*args, **kwargs):
|
|
|
+ win_sound.Beep(*args, **kwargs)
|
|
|
+except ImportError:
|
|
|
+ win_sound = None
|
|
|
+
|
|
|
+
|
|
|
+ def beep(*_args, **_kwargs):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+def round_to_digits(x, d):
|
|
|
+ if x == 0:
|
|
|
+ return 0
|
|
|
+ if isnan(x):
|
|
|
+ return nan
|
|
|
+ try:
|
|
|
+ return round(x, d - 1 - int(floor(log10(abs(x)))))
|
|
|
+ except OverflowError:
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+def gc_if_memory_error(f, *args, **kwargs):
|
|
|
+ try:
|
|
|
+ return f(*args, **kwargs)
|
|
|
+ except MemoryError:
|
|
|
+ print('Starting garbage collector')
|
|
|
+ gc.collect()
|
|
|
+ return f(*args, **kwargs)
|
|
|
+
|
|
|
+
|
|
|
+def assert_not_empty(x):
|
|
|
+ assert len(x)
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+def validation_steps(validation_dataset_size, maximum_batch_size):
|
|
|
+ batch_size = gcd(validation_dataset_size, maximum_batch_size)
|
|
|
+ steps = validation_dataset_size // batch_size
|
|
|
+ assert batch_size * steps == validation_dataset_size
|
|
|
+ return batch_size, steps
|
|
|
+
|
|
|
+
|
|
|
+def functional_dependency_trigger(connection: sqlite3.Connection,
|
|
|
+ table_name: str,
|
|
|
+ determining_columns: List[str],
|
|
|
+ determined_columns: List[str],
|
|
|
+ exist_ok: bool, ):
|
|
|
+ cursor = connection.cursor()
|
|
|
+ # possible_performance_improvements
|
|
|
+ determined_columns = [c for c in determined_columns if c not in determining_columns]
|
|
|
+ trigger_base_name = '_'.join([table_name] + determining_columns + ['determine'] + determined_columns)
|
|
|
+
|
|
|
+ error_message = ','.join(determining_columns) + ' must uniquely identify ' + ','.join(determined_columns)
|
|
|
+
|
|
|
+ # when inserting check if there is already an entry with these values
|
|
|
+ cursor.execute(f'''
|
|
|
+ CREATE TRIGGER {'IF NOT EXISTS' if exist_ok else ''} {trigger_base_name}_after_insert
|
|
|
+ BEFORE INSERT ON {table_name}
|
|
|
+ WHEN EXISTS(SELECT * FROM {table_name}
|
|
|
+ WHERE ({' AND '.join(f'NEW.{c} IS NOT NULL AND {c} = NEW.{c}' for c in determining_columns)})
|
|
|
+ AND ({' OR '.join(f'{c} != NEW.{c}' for c in determined_columns)}))
|
|
|
+ BEGIN SELECT RAISE(ROLLBACK, '{error_message}'); END
|
|
|
+ ''')
|
|
|
+
|
|
|
+ # when updating check if there is already an entry with these values (only if changed)
|
|
|
+ cursor.execute(f'''
|
|
|
+ CREATE TRIGGER {'IF NOT EXISTS' if exist_ok else ''} {trigger_base_name}_after_update
|
|
|
+ BEFORE UPDATE ON {table_name}
|
|
|
+ WHEN EXISTS(SELECT * FROM {table_name}
|
|
|
+ WHERE ({' AND '.join(f'NEW.{c} IS NOT NULL AND {c} = NEW.{c}' for c in determining_columns)})
|
|
|
+ AND ({' OR '.join(f'{c} != NEW.{c}' for c in determined_columns)}))
|
|
|
+ BEGIN SELECT RAISE(ROLLBACK, '{error_message}'); END
|
|
|
+ ''')
|
|
|
+
|
|
|
+
|
|
|
+def heatmap_from_points(x, y,
|
|
|
+ x_lim: Optional[Union[int, Tuple[int, int]]] = None,
|
|
|
+ y_lim: Optional[Union[int, Tuple[int, int]]] = None,
|
|
|
+ gridsize=30):
|
|
|
+ if isinstance(x_lim, Number):
|
|
|
+ x_lim = (x_lim, x_lim)
|
|
|
+ if isinstance(y_lim, Number):
|
|
|
+ y_lim = (y_lim, y_lim)
|
|
|
+
|
|
|
+ plt.hexbin(x, y, gridsize=gridsize, cmap=matplotlib.cm.jet, bins=None)
|
|
|
+ if x_lim is not None:
|
|
|
+ plt.xlim(x_lim)
|
|
|
+ if y_lim is not None:
|
|
|
+ plt.ylim(y_lim)
|
|
|
+
|
|
|
+ cb = plt.colorbar()
|
|
|
+ cb.set_label('mean value')
|
|
|
+
|
|
|
+
|
|
|
+def strptime(date_string, fmt):
|
|
|
+ return datetime.datetime(*(time.strptime(date_string, fmt)[0:6]))
|
|
|
+
|
|
|
+
|
|
|
+class PrintLineRLock(RLock().__class__):
|
|
|
+ def __init__(self, *args, name='', **kwargs):
|
|
|
+ # noinspection PyArgumentList
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ self.name = name
|
|
|
+
|
|
|
+ def acquire(self, blocking: bool = True, timeout: float = -1) -> bool:
|
|
|
+ print(f'Trying to acquire Lock {self.name}')
|
|
|
+ result = RLock.acquire(self, blocking, timeout)
|
|
|
+ print(f'Acquired Lock {self.name}')
|
|
|
+ return result
|
|
|
+
|
|
|
+ def release(self) -> None:
|
|
|
+ print(f'Trying to release Lock {self.name}')
|
|
|
+ # noinspection PyNoneFunctionAssignment
|
|
|
+ result = RLock.release(self)
|
|
|
+ print(f'Released Lock {self.name}')
|
|
|
+ return result
|
|
|
+
|
|
|
+ def __enter__(self, *args, **kwargs):
|
|
|
+ print('Trying to enter Lock')
|
|
|
+ # noinspection PyArgumentList
|
|
|
+ super().__enter__(*args, **kwargs)
|
|
|
+ print('Entered Lock')
|
|
|
+
|
|
|
+ def __exit__(self, *args, **kwargs):
|
|
|
+ print('Trying to exit Lock')
|
|
|
+ super().__exit__(*args, **kwargs)
|
|
|
+ print('Exited Lock')
|
|
|
+
|
|
|
+
|
|
|
+def fixed_get_current_frames():
|
|
|
+ """Return current threads prepared for
|
|
|
+ further processing.
|
|
|
+ """
|
|
|
+ threads = {thread.ident: thread for thread in threading.enumerate()}
|
|
|
+ return {
|
|
|
+ thread_id: {
|
|
|
+ 'frame': hanging_threads.thread2list(frame),
|
|
|
+ 'time': None,
|
|
|
+ 'id': thread_id,
|
|
|
+ 'name': threads[thread_id].name,
|
|
|
+ 'object': threads[thread_id]
|
|
|
+ } for thread_id, frame in sys._current_frames().items()
|
|
|
+ if thread_id in threads # otherwise keyerrors might happen because of race conditions
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+hanging_threads.get_current_frames = fixed_get_current_frames
|
|
|
+
|
|
|
+
|
|
|
+class CallCounter():
|
|
|
+ def __init__(self, f):
|
|
|
+ self.f = f
|
|
|
+ self.calls = 0
|
|
|
+ self.__name__ = f.__name__
|
|
|
+
|
|
|
+ def __call__(self, *args, **kwargs):
|
|
|
+ self.calls += 1
|
|
|
+ return self.f(*args, **kwargs)
|
|
|
+
|
|
|
+ def __str__(self):
|
|
|
+ return str(self.__dict__)
|
|
|
+
|
|
|
+ def __repr__(self):
|
|
|
+ return self.__class__.__name__ + repr(self.__dict__)
|
|
|
+
|
|
|
+
|
|
|
+def test_with_timeout(timeout=2):
|
|
|
+ def wrapper(f):
|
|
|
+ from lib.threading_timer_decorator import exit_after
|
|
|
+ f = exit_after(timeout)(f)
|
|
|
+
|
|
|
+ @functools.wraps(f)
|
|
|
+ def wrapped(*args, **kwargs):
|
|
|
+ try:
|
|
|
+ print(f'Running this test with timeout: {timeout}')
|
|
|
+ return f(*args, **kwargs)
|
|
|
+ except KeyboardInterrupt:
|
|
|
+ raise AssertionError(f'Test took longer than {timeout} seconds')
|
|
|
+
|
|
|
+ return wrapped
|
|
|
+
|
|
|
+ return wrapper
|
|
|
+
|
|
|
+
|
|
|
+def lru_cache_by_id(maxsize):
|
|
|
+ return cachetools.cached(cachetools.LRUCache(maxsize=maxsize), key=id)
|
|
|
+
|
|
|
+
|
|
|
+class EquivalenceRelation:
|
|
|
+ def equivalent(self, a, b) -> bool:
|
|
|
+ raise NotImplementedError('Abstract method')
|
|
|
+
|
|
|
+ def equivalence_classes(self, xs: list):
|
|
|
+ classes = []
|
|
|
+ for x in xs:
|
|
|
+ for c in classes:
|
|
|
+ if self.equivalent(x, c[0]):
|
|
|
+ c.append(x)
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ classes.append([x])
|
|
|
+ return classes
|
|
|
+
|
|
|
+ def check_reflexivity_on_dataset(self, xs):
|
|
|
+ for x in xs:
|
|
|
+ if not self.equivalent(x, x):
|
|
|
+ return False
|
|
|
+ return True
|
|
|
+
|
|
|
+ def check_symmetry_on_dataset(self, xs):
|
|
|
+ for x in xs:
|
|
|
+ for y in xs:
|
|
|
+ if x is y:
|
|
|
+ continue
|
|
|
+ if self.equivalent(x, y) and not self.equivalent(y, x):
|
|
|
+ return False
|
|
|
+ return True
|
|
|
+
|
|
|
+ def check_axioms_on_dataset(self, xs):
|
|
|
+ return (
|
|
|
+ self.check_reflexivity_on_dataset(xs)
|
|
|
+ and self.check_symmetry_on_dataset(xs)
|
|
|
+ and self.check_transitivity_on_dataset(xs, assume_symmetry=True, assume_reflexivity=True)
|
|
|
+ )
|
|
|
+
|
|
|
+ def check_transitivity_on_dataset(self, xs, assume_symmetry=False, assume_reflexivity=False):
|
|
|
+ for x_idx, x in enumerate(xs):
|
|
|
+ for y_idx, y in enumerate(xs):
|
|
|
+ if x is y:
|
|
|
+ continue
|
|
|
+ if self.equivalent(x, y):
|
|
|
+ for z_idx, z in enumerate(xs):
|
|
|
+ if y is z:
|
|
|
+ continue
|
|
|
+ if assume_symmetry and x_idx > z_idx:
|
|
|
+ continue
|
|
|
+ if assume_reflexivity and x is z:
|
|
|
+ continue
|
|
|
+ if self.equivalent(y, z):
|
|
|
+ if not self.equivalent(x, z):
|
|
|
+ return False
|
|
|
+ return True
|
|
|
+
|
|
|
+ def match_lists(self, xs, ys, filter_minimum_size=0, filter_maximum_size=math.inf):
|
|
|
+ xs = list(xs)
|
|
|
+ ys = list(ys)
|
|
|
+ if any(x is y for x in xs for y in ys):
|
|
|
+ raise ValueError('Lists contain the same element. This is currently not supported.')
|
|
|
+ classes = self.equivalence_classes([*xs, *ys])
|
|
|
+
|
|
|
+ return [
|
|
|
+ [
|
|
|
+ (0 if any(x2 is x for x2 in xs) else 1, x)
|
|
|
+ for x in c
|
|
|
+ ]
|
|
|
+ for c in classes[::-1]
|
|
|
+ if filter_minimum_size <= len(c) <= filter_maximum_size
|
|
|
+ ]
|
|
|
+
|
|
|
+
|
|
|
+def iff_patch(patch: mock._patch):
|
|
|
+ def decorator(f):
|
|
|
+ def wrapped(*args, **kwargs):
|
|
|
+ with patch:
|
|
|
+ f(*args, **kwargs)
|
|
|
+ try:
|
|
|
+ f(*args, **kwargs)
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ raise AssertionError('Test did not fail without patch')
|
|
|
+
|
|
|
+ return wrapped
|
|
|
+
|
|
|
+ return decorator
|
|
|
+
|
|
|
+
|
|
|
+def iff_not_patch(patch: mock._patch):
|
|
|
+ def decorator(f):
|
|
|
+ def wrapped(*args, **kwargs):
|
|
|
+ f(*args, **kwargs)
|
|
|
+ try:
|
|
|
+ with patch:
|
|
|
+ f(*args, **kwargs)
|
|
|
+ except Exception as e:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ raise AssertionError('Test did not fail with patch')
|
|
|
+
|
|
|
+ return wrapped
|
|
|
+
|
|
|
+ return decorator
|
|
|
+
|
|
|
+
|
|
|
+EMAIL_CRASHES_TO = []
|
|
|
+VOICE_CALL_ON_CRASH: List[Tuple[str, str]] = []
|
|
|
+
|
|
|
+
|
|
|
+def list_logger(base_logging_function, store_in_list: list):
|
|
|
+ def print_and_store(*args, **kwargs):
|
|
|
+ base_logging_function(*args, **kwargs)
|
|
|
+ store_in_list.extend(args)
|
|
|
+
|
|
|
+ return print_and_store
|
|
|
+
|
|
|
+
|
|
|
+def main_wrapper(f):
|
|
|
+ @functools.wraps(f)
|
|
|
+ def wrapper(*args, **kwargs):
|
|
|
+ start = time.perf_counter()
|
|
|
+ # import lib.stack_tracer
|
|
|
+ import __main__
|
|
|
+ # does not help much
|
|
|
+ # monitoring_thread = hanging_threads.start_monitoring(seconds_frozen=180, test_interval=1000)
|
|
|
+ os.makedirs('logs', exist_ok=True)
|
|
|
+ stack_tracer.trace_start('logs/' + os.path.split(__main__.__file__)[-1] + '.html', interval=5)
|
|
|
+ faulthandler.enable()
|
|
|
+ profile_wall_time_instead_if_profiling()
|
|
|
+
|
|
|
+ # noinspection PyBroadException
|
|
|
+ try:
|
|
|
+ return f(*args, **kwargs)
|
|
|
+ except KeyboardInterrupt:
|
|
|
+ error_messages = []
|
|
|
+ print_exc_plus.print_exc_plus(print=list_logger(logging.error, error_messages),
|
|
|
+ serialize_to='logs/' + os.path.split(__main__.__file__)[-1] + '.dill')
|
|
|
+ except:
|
|
|
+ error_messages = []
|
|
|
+ print_exc_plus.print_exc_plus(print=list_logger(logging.error, error_messages),
|
|
|
+ serialize_to='logs/' + os.path.split(__main__.__file__)[-1] + '.dill')
|
|
|
+ for recipient in EMAIL_CRASHES_TO:
|
|
|
+ from jobs.sending_emails import send_mail
|
|
|
+ send_mail.create_simple_mail_via_gmail(body='\n'.join(error_messages), filepath=None, excel_name=None, to_mail=recipient, subject='[python] Crash report')
|
|
|
+ for to_number, from_number in VOICE_CALL_ON_CRASH:
|
|
|
+ logging.info(f'Calling {from_number} to notify about the crash.')
|
|
|
+ voice_call('This is a notification message that one of your python scripts has crashed. If you are unsure about the origin of this call, please contact Eren Yilmaz.',
|
|
|
+ to_number, from_number)
|
|
|
+ finally:
|
|
|
+ logging.info('Terminated.')
|
|
|
+ total_time = time.perf_counter() - start
|
|
|
+ faulthandler.disable()
|
|
|
+ stack_tracer.trace_stop()
|
|
|
+ frequency = 2000
|
|
|
+ duration = 500
|
|
|
+ beep(frequency, duration)
|
|
|
+ print('Total time', total_time)
|
|
|
+ try:
|
|
|
+ from algorithm_development.metatrader import ZeroMQ_Connector
|
|
|
+ ZeroMQ_Connector.DWX_ZeroMQ_Connector.deactivate_all()
|
|
|
+ except ImportError:
|
|
|
+ pass
|
|
|
+
|
|
|
+ return wrapper
|
|
|
+
|
|
|
+
|
|
|
+def voice_call(msg, to_number, from_number):
|
|
|
+ from twilio.rest import Client
|
|
|
+ account_sid = 'AC63c459168c3e4fe34e462acb4f44f748'
|
|
|
+ auth_token = 'b633bc0e945fe7cb737fdac395cc71d6'
|
|
|
+ client = Client(account_sid, auth_token)
|
|
|
+
|
|
|
+ call = client.calls.create(
|
|
|
+ twiml=f'<Response><Say>{msg}</Say></Response>',
|
|
|
+ from_=from_number,
|
|
|
+ to=to_number,
|
|
|
+ )
|
|
|
+
|
|
|
+ print(call.sid)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def required_size_for_safe_rotation(base: Tuple[X, Y, Z], rotate_range_deg) -> Tuple[X, Y, Z]:
|
|
|
+ if abs(rotate_range_deg) > 45:
|
|
|
+ raise NotImplementedError
|
|
|
+ if abs(rotate_range_deg) > 0:
|
|
|
+ x_length = base[2] * math.sin(rotate_range_deg / 180 * math.pi) + base[1] * math.cos(
|
|
|
+ rotate_range_deg / 180 * math.pi)
|
|
|
+ y_length = base[2] * math.cos(rotate_range_deg / 180 * math.pi) + base[1] * math.sin(
|
|
|
+ rotate_range_deg / 180 * math.pi)
|
|
|
+ result = (base[0],
|
|
|
+ x_length,
|
|
|
+ y_length,)
|
|
|
+ else:
|
|
|
+ result = base
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+def round_to_closest_value(x, values, assume_sorted=False):
|
|
|
+ if not assume_sorted:
|
|
|
+ values = sorted(values)
|
|
|
+ next_largest = bisect_left(values, x) # binary search
|
|
|
+ if next_largest == 0:
|
|
|
+ return values[0]
|
|
|
+ if next_largest == len(values):
|
|
|
+ return values[-1]
|
|
|
+ next_smallest = next_largest - 1
|
|
|
+ smaller = values[next_smallest]
|
|
|
+ larger = values[next_largest]
|
|
|
+ if abs(smaller - x) < abs(larger - x):
|
|
|
+ return smaller
|
|
|
+ else:
|
|
|
+ return larger
|
|
|
+
|
|
|
+
|
|
|
+def binary_search(a, x, lo=0, hi=None):
|
|
|
+ hi = hi if hi is not None else len(a) # hi defaults to len(a)
|
|
|
+
|
|
|
+ pos = bisect_left(a, x, lo, hi) # find insertion position
|
|
|
+
|
|
|
+ return pos if pos != hi and a[pos] == x else -1 # don't walk off the end
|
|
|
+
|
|
|
+
|
|
|
+def ceil_to_closest_value(x, values):
|
|
|
+ values = sorted(values)
|
|
|
+ next_largest = bisect_left(values, x) # binary search
|
|
|
+ if next_largest < len(values):
|
|
|
+ return values[next_largest]
|
|
|
+ else:
|
|
|
+ return values[-1] # if there is no larger value use the largest one
|
|
|
+
|
|
|
+
|
|
|
+def print_progress_bar(iteration, total, prefix='Progress:', suffix='', decimals=1, length=50, fill='█',
|
|
|
+ print_eta=True):
|
|
|
+ """
|
|
|
+ Call in a loop to create terminal progress bar
|
|
|
+ @params:
|
|
|
+ iteration - Required : current iteration (Int)
|
|
|
+ total - Required : total iterations (Int)
|
|
|
+ prefix - Optional : prefix string (Str)
|
|
|
+ suffix - Optional : suffix string (Str)
|
|
|
+ decimals - Optional : positive number of decimals in percent complete (Int)
|
|
|
+ length - Optional : character length of bar (Int)
|
|
|
+ fill - Optional : bar fill character (Str)
|
|
|
+ """
|
|
|
+ percent = ("{0:" + str(4 + decimals) + "." + str(decimals) + "f}").format(100 * (iteration / float(total)))
|
|
|
+ filled_length = int(length * iteration // total)
|
|
|
+ bar = fill * filled_length + '-' * (length - filled_length)
|
|
|
+ if getattr(print_progress_bar, 'last_printed_value', None) == (prefix, bar, percent, suffix):
|
|
|
+ return
|
|
|
+ print_progress_bar.last_printed_value = (prefix, bar, percent, suffix)
|
|
|
+ print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='')
|
|
|
+ # Print New Line on Complete
|
|
|
+ if iteration == total:
|
|
|
+ print()
|
|
|
+
|
|
|
+
|
|
|
+def get_all_subclasses(klass):
|
|
|
+ all_subclasses = []
|
|
|
+
|
|
|
+ for subclass in klass.__subclasses__():
|
|
|
+ all_subclasses.append(subclass)
|
|
|
+ all_subclasses.extend(get_all_subclasses(subclass))
|
|
|
+
|
|
|
+ return all_subclasses
|
|
|
+
|
|
|
+
|
|
|
+def my_mac_address():
|
|
|
+ """
|
|
|
+ https://stackoverflow.com/a/160821
|
|
|
+ """
|
|
|
+ import uuid
|
|
|
+ mac = uuid.getnode()
|
|
|
+ if (mac >> 40) % 2:
|
|
|
+ return None
|
|
|
+ mac = uuid.UUID(int=mac).hex[-12:]
|
|
|
+ return mac
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def latin1_json(data):
|
|
|
+ return json.dumps(data, ensure_ascii=False).encode('latin-1')
|
|
|
+
|
|
|
+
|
|
|
+def l2_norm(v1, v2):
|
|
|
+ if len(v1) != len(v2):
|
|
|
+ raise ValueError('Both vectors must be of the same size')
|
|
|
+ return math.sqrt(sum([(x1 - x2) * (x1 - x2) for x1, x2 in zip(v1, v2)]))
|
|
|
+
|
|
|
+
|
|
|
+def allow_additional_unused_keyword_arguments(func):
|
|
|
+ @functools.wraps(func)
|
|
|
+ def wrapper(*args, **kwargs):
|
|
|
+ allowed_kwargs = [param.name for param in inspect.signature(func).parameters.values()]
|
|
|
+ allowed_kwargs = {a: kwargs[a] for a in kwargs if a in allowed_kwargs}
|
|
|
+ return func(*args, **allowed_kwargs)
|
|
|
+
|
|
|
+ return wrapper
|
|
|
+
|
|
|
+
|
|
|
+def copy_and_rename_method(func, new_name):
|
|
|
+ funcdetails = [
|
|
|
+ func.__code__,
|
|
|
+ func.__globals__,
|
|
|
+ func.__name__,
|
|
|
+ func.__defaults__,
|
|
|
+ func.__closure__
|
|
|
+ ]
|
|
|
+ old_name = func.__name__
|
|
|
+ # copy
|
|
|
+ # new_func = dill.loads(dill.dumps(func))
|
|
|
+ new_func = FunctionType(*funcdetails)
|
|
|
+ assert new_func is not funcdetails
|
|
|
+ # rename
|
|
|
+ new_func.__name__ = new_name
|
|
|
+ assert func.__name__ is old_name
|
|
|
+ return new_func
|
|
|
+
|
|
|
+
|
|
|
+def rename(new_name):
|
|
|
+ def decorator(f):
|
|
|
+ f.__name__ = new_name
|
|
|
+ return f
|
|
|
+
|
|
|
+ return decorator
|
|
|
+
|
|
|
+
|
|
|
+class LogicError(Exception):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+def round_time(dt=None, precision=60):
|
|
|
+ """Round a datetime object to any time lapse in seconds
|
|
|
+ dt : datetime.datetime object, default now.
|
|
|
+ roundTo : Closest number of seconds to round to, default 1 minute.
|
|
|
+ Author: Thierry Husson 2012 - Use it as you want but don't blame me.
|
|
|
+ """
|
|
|
+ if dt is None:
|
|
|
+ dt = datetime.datetime.now()
|
|
|
+ if isinstance(precision, datetime.timedelta):
|
|
|
+ precision = precision.total_seconds()
|
|
|
+ seconds = (dt.replace(tzinfo=None) - dt.min).seconds
|
|
|
+ rounding = (seconds + precision / 2) // precision * precision
|
|
|
+ return dt + datetime.timedelta(seconds=rounding - seconds,
|
|
|
+ microseconds=dt.microsecond)
|
|
|
+
|
|
|
+
|
|
|
+def chunks(lst, n):
|
|
|
+ """Yield successive n-sized chunks from lst."""
|
|
|
+ for i in range(0, len(lst), n):
|
|
|
+ yield lst[i:i + n]
|
|
|
+
|
|
|
+
|
|
|
+def shorten_name(name):
|
|
|
+ name = re.sub(r'\s+', r' ', str(name))
|
|
|
+ name = name.replace(', ', ',')
|
|
|
+ name = name.replace(', ', ',')
|
|
|
+ name = name.replace(' ', '_')
|
|
|
+ return re.sub(r'([A-Za-z])[a-z]*_?', r'\1', str(name))
|
|
|
+
|
|
|
+
|
|
|
+def array_analysis(a: numpy.ndarray):
|
|
|
+ print(f' Shape: {a.shape}')
|
|
|
+ mean = a.mean()
|
|
|
+ print(f' Mean: {mean}')
|
|
|
+ print(f' Std: {a.std()}')
|
|
|
+ print(f' Min, Max: {a.min(), a.max()}')
|
|
|
+ print(f' Mean absolute: {numpy.abs(a).mean()}')
|
|
|
+ print(f' Mean square: {numpy.square(a).mean()}')
|
|
|
+ print(f' Mean absolute difference from mean: {numpy.abs(a - mean).mean()}')
|
|
|
+ print(f' Mean squared difference from mean: {numpy.square(a - mean).mean()}')
|
|
|
+ nonzero = numpy.count_nonzero(a)
|
|
|
+ print(f' Number of non-zeros: {nonzero}')
|
|
|
+ print(f' Number of zeros: {numpy.prod(a.shape) - nonzero}')
|
|
|
+ if a.shape[-1] > 1 and a.shape[-1] <= 1000:
|
|
|
+ # last dim is probably the number of classes
|
|
|
+ print(f' Class counts: {numpy.count_nonzero(a, axis=tuple(range(len(a.shape) - 1)))}')
|
|
|
+
|
|
|
+
|
|
|
+def current_year_begin():
|
|
|
+ return datetime.datetime(datetime.datetime.today().year, 1, 1).timestamp()
|
|
|
+
|
|
|
+
|
|
|
+def current_day_begin():
|
|
|
+ return datetime.datetime.today().timestamp() // (3600 * 24) * (3600 * 24)
|
|
|
+
|
|
|
+
|
|
|
+def current_second_begin():
|
|
|
+ return floor(datetime.datetime.today().timestamp())
|
|
|
+
|
|
|
+
|
|
|
+def running_workers(executor):
|
|
|
+ print(next(iter(executor._threads)).__dict__)
|
|
|
+ return sum(1 for t in executor._threads
|
|
|
+ if t == 1)
|
|
|
+
|
|
|
+
|
|
|
+def queued_calls(executor):
|
|
|
+ return len(executor._work_queue.queue)
|
|
|
+
|
|
|
+
|
|
|
+def retry_on_error(max_tries=3, delay=0.5, backoff=2, only_error_classes=Exception):
|
|
|
+ def decorator(func):
|
|
|
+ @functools.wraps(func)
|
|
|
+ def wrapper(*args, **kwargs):
|
|
|
+ for i in range(max_tries):
|
|
|
+ try:
|
|
|
+ return func(*args, **kwargs)
|
|
|
+ except only_error_classes as e:
|
|
|
+ if i == max_tries - 1:
|
|
|
+ raise
|
|
|
+ logging.error(f'Re-try after error in {func.__name__}: {type(e).__name__}, {e}')
|
|
|
+ time.sleep(delay * (backoff ** i))
|
|
|
+ return wrapper
|
|
|
+ return decorator
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+class EBC:
|
|
|
+ SUBCLASSES_BY_NAME: Dict[str, Type['EBC']] = {}
|
|
|
+
|
|
|
+ def __init_subclass__(cls, **kwargs):
|
|
|
+ super().__init_subclass__(**kwargs)
|
|
|
+ EBC.SUBCLASSES_BY_NAME[cls.__name__] = cls
|
|
|
+
|
|
|
+ def __eq__(self, other):
|
|
|
+ return isinstance(other, type(self)) and self.__dict__ == other.__dict__
|
|
|
+
|
|
|
+ def __str__(self):
|
|
|
+ return str(self.__dict__)
|
|
|
+
|
|
|
+ def __repr__(self):
|
|
|
+ return f'{type(self).__name__}(**' + str(self.__dict__) + ')'
|
|
|
+
|
|
|
+ def to_json(self) -> Dict[str, Any]:
|
|
|
+ result: Dict[str, Any] = {
|
|
|
+ 'type': type(self).__name__,
|
|
|
+ **self.__dict__,
|
|
|
+ }
|
|
|
+ for k in result:
|
|
|
+ if isinstance(result[k], EBC):
|
|
|
+ result[k] = result[k].to_json()
|
|
|
+ elif isinstance(result[k], numpy.ndarray):
|
|
|
+ result[k] = result[k].tolist()
|
|
|
+ elif isinstance(result[k], list):
|
|
|
+ result[k] = [r.to_json() if isinstance(r, EBC) else r
|
|
|
+ for r in result[k]]
|
|
|
+ return result
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def from_json(data: Dict[str, Any]):
|
|
|
+ cls = EBC.SUBCLASSES_BY_NAME[data['type']]
|
|
|
+ return class_from_json(cls, data)
|
|
|
+
|
|
|
+
|
|
|
+def class_from_json(cls, data: Dict[str, Any]):
|
|
|
+ if isinstance(data, str):
|
|
|
+ data = json.loads(data)
|
|
|
+ # noinspection PyArgumentList
|
|
|
+ try:
|
|
|
+ return cls(**data)
|
|
|
+ except TypeError as e:
|
|
|
+ if "__init__() got an unexpected keyword argument 'type'" in str(e) or 'takes no arguments' in str(e):
|
|
|
+ # probably this was from a to_json method
|
|
|
+ if data['type'] != cls.__name__:
|
|
|
+ t = data['type']
|
|
|
+ logging.warning(f'Reconstructing a {cls.__name__} from a dict with type={t}')
|
|
|
+ data = data.copy()
|
|
|
+ del data['type']
|
|
|
+ for k,v in data.items():
|
|
|
+ if probably_serialized_from_ebc(v):
|
|
|
+ data[k] = EBC.SUBCLASSES_BY_NAME[v['type']].from_json(v)
|
|
|
+ elif isinstance(v, list):
|
|
|
+ data[k] = [EBC.SUBCLASSES_BY_NAME[x['type']].from_json(x)
|
|
|
+ if probably_serialized_from_ebc(x)
|
|
|
+ else x
|
|
|
+ for x in v]
|
|
|
+ return allow_additional_unused_keyword_arguments(cls)(**data)
|
|
|
+ else:
|
|
|
+ raise
|
|
|
+
|
|
|
+def probably_serialized_from_ebc(data):
|
|
|
+ return isinstance(data, dict) and 'type' in data and data['type'] in EBC.SUBCLASSES_BY_NAME
|
|
|
+
|
|
|
+
|
|
|
+class EBE(Enum):
|
|
|
+ def __int__(self):
|
|
|
+ return self.value
|
|
|
+
|
|
|
+ def __str__(self):
|
|
|
+ return self.name
|
|
|
+
|
|
|
+ def __repr__(self):
|
|
|
+ return self.name
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_name(cls, variable_name):
|
|
|
+ return cls.__dict__[variable_name]
|
|
|
+
|
|
|
+
|
|
|
+class Bunch(dict, EBC):
|
|
|
+ def __init__(self, **kwargs):
|
|
|
+ dict.__init__(self, kwargs)
|
|
|
+ self.__dict__.update(kwargs)
|
|
|
+
|
|
|
+ def add_method(self, m):
|
|
|
+ setattr(self, m.__name__, functools.partial(m, self))
|
|
|
+
|
|
|
+
|
|
|
+def floor_to_multiple_of(x, multiple_of):
|
|
|
+ return math.floor(x / multiple_of) * multiple_of
|
|
|
+
|
|
|
+
|
|
|
+def round_to_multiple_of(x, multiple_of):
|
|
|
+ return round(x / multiple_of) * multiple_of
|
|
|
+
|
|
|
+
|
|
|
+def ceil_to_multiple_of(x, multiple_of):
|
|
|
+ return math.ceil(x / multiple_of) * multiple_of
|
|
|
+
|
|
|
+
|